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Abstract

Despite significant advances in deepfake detection, handling
varying image quality, especially due to different compres-
sions on online social networks (OSNs), remains challeng-
ing. Current methods succeed by leveraging correlations be-
tween paired images, whether raw or compressed. However,
in open-world scenarios, paired data is scarce, with com-
pressed images readily available but corresponding raw ver-
sions difficult to obtain. This imbalance, where unpaired data
vastly outnumbers paired data, often leads to reduced detec-
tion performance, as existing methods struggle without cor-
responding raw images. To overcome this issue, we propose
a novel approach named the open-world deepfake detection
network (ODDN), which comprises two core modules: open-
world data aggregation (ODA) and compression-discard gra-
dient correction (CGC). ODA effectively aggregates corre-
lations between compressed and raw samples through both
fine-grained and coarse-grained analyses for paired and un-
paired data, respectively. CGC incorporates a compression-
discard gradient correction to further enhance performance
across diverse compression methods in OSN. This technique
optimizes the training gradient to ensure the model remains
insensitive to compression variations. Extensive experiments
conducted on 17 popular deepfake datasets demonstrate the
superiority of the ODDN over SOTA baselines.

Code — https://github.com/rstao-bjtu/ODDN/

Introduction
With the rapid development of deep learning-based gener-
ation technology(Zhou et al. 2023; Yu et al. 2023; Zhang
et al. 2023, 2024a; Pan et al. 2024; Zhang et al. 2024b; Liu,
Ye, and Du 2024), AI-generated images are increasingly ap-
pearing on social media platforms like Twitter and WeChat.
While these images enhance creativity and enjoyment, they
also introduce significant safety risks. The ability to create
highly realistic images easily has raised concerns about mis-
information, privacy, and security. Deepfakes can be used to
spread false information, creating fake news that misleads
the public. Additionally, these images can be exploited for
malicious purposes such as identity theft, fraud, and cyber-
bullying, amplifying the potential for harm across social me-
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Figure 1: Comparison of training data and models between
traditional and open-world scenarios.

dia platforms(Asnani et al. 2023; Vice et al. 2024; Ding et al.
2023; Zeng et al. 2024).

Despite significant progress in detecting AI-generated im-
ages, detecting forged images on online social networks
(OSN) has received relatively little attention. Images on
these platforms are often subjected to various compression
methods (Dzanic, Shah, and Witherden 2020; Wu et al.
2023), complicating detection efforts. Compression tech-
niques employed by platforms like Twitter and WeChat de-
grade image quality and obscure manipulation indicators,
making forgery identification more challenging. As a result,
developing robust detection methods capable of overcoming
the unique challenges posed by social media compression
remains an urgent research focus in image forensics.

Current methods (Wu et al. 2022; Le and Woo 2023; Liu
et al. 2023; Le and Woo 2024) for detecting forged images
in compressed formats typically rely on paired data (com-
pressed images and their corresponding originals) for train-
ing. These approaches focus on identifying feature correla-
tions between paired data, achieving notable performance
improvements under specific compression methods. How-
ever, in real-world OSN scenarios, obtaining the original
images corresponding to compressed ones is often imprac-
tical, leading to a significant imbalance between paired and
unpaired data, with unpaired data far outnumbering paired



data. The abundance of unpaired data, whether real or fake,
compressed or raw, contains valuable evidence that can aid
in authenticity differentiation. However, methods reliant on
paired data often fail to effectively integrate this unpaired
data, resulting in the loss of critical information. Addition-
ally, existing strategies that focus on fine-grained data asso-
ciations between compressed images and their correspond-
ing raw versions struggle to address coarse-grained con-
nections among unpaired data. Therefore, exploring robust
deepfake detection techniques that can handle open-world
scenarios with imbalanced data is crucial for controlling the
spread of forged information on various OSN platforms.

In this paper, we first identify the challenge of open-
world deepfake detection on OSN, where available training
data are often unpaired. Traditional pair-data-based methods
are unsuitable for this scenario because compressed images
typically lack the corresponding original images, making
it difficult to apply these traditional approaches effectively.
To address this imbalanced dilemma, we propose a novel
method called the open-world deepfake detection network
(ODDN), which comprises two core modules: open-world
data aggregation (ODA) and compression-discard gradient
correction (CGC). The ODA module tackles the challenge
of aligning true and false sample features across differ-
ent types of data, while the CGC module addresses the is-
sue of poor gradient optimization direction when removing
compression-sensitive information during training.

Specifically, the ODA module handles paired and un-
paired input data from open-world OSN with distinct pro-
cessing approaches. For a small quantity of paired data
(20%), the ODA module exploits fine-grained correlations
between the compressed images and their corresponding
originals. For the remaining 80% unpaired data, it estab-
lishes coarse-grained correlations by clustering the true and
false images. Meanwhile, the CGC module ensures the
model’s insensitivity to compression, which is crucial for
effectively handling various compression methods in open-
world OSN scenarios. It adopts PCGrad to align and facili-
tate interactions between distinct gradients, ensuring that the
optimization process remains focused on directions that pos-
itively impact the main task of the real/fake discrimination.

To comprehensively evaluate the effectiveness of the pro-
posed ODDN, we designed an innovative training data setup
to simulate an open-world OSN environment, where un-
paired data (80%) far outnumber paired data (20%). Specif-
ically, we compressed a small portion of the training data,
typically used for forgery detection tasks, to create paired
data, which was then combined with the remaining unpaired
data to form the training set. We trained all baseline mod-
els and our method on this same training set and assessed
their performance under two different test conditions: one
aligned with the compression level of the training set and the
other unrelated. Our evaluation involved 17 popular GAN-
based datasets across these two test settings. The final re-
sults demonstrate that our model significantly outperforms
existing state-of-the-art models, showcasing its superior ef-
fectiveness in OSN. Our contributions are summarized blow:
Here’s a reconstructed version of the three contributions:
• We introduce the challenge of unpaired data in deepfake

detection within open-world scenarios on OSN by de-
signing a novel setup that simulates these environments,
offering a valuable benchmark for future research.

• To handle this dilemma, we propose the ODDN, com-
prising ODA for optimizing artifact feature alignment in
unpaired data scenarios, and CGC for reducing gradient
biases when removing compression-related information,
thereby enhancing detection robustness and adaptability.

• Comprehensive experiments have validated the effective-
ness of ODDN across 17 popular datasets under various
test settings, demonstrating superior performance in de-
tecting deepfakes on OSN compared to SOTA baselines.

Related Work
Various strategies have been employed to enhance the gener-
alization of detectors to unseen sources. These strategies in-
clude diversifying training data through augmentation meth-
ods (Wang et al. 2020, 2021), adversarial training (Chen
et al. 2022), reconstruction techniques (Cao et al. 2022; He
et al. 2021), fingerprint generators (Jeong et al. 2022b), and
blending images (Shiohara and Yamasaki 2022). Specific
methodologies such as BiHPF (Jeong et al. 2022a) amplify
artifacts’ magnitudes through two high-pass filters. FreGAN
(Jeong et al. 2022c) addresses the overfitting of training
sources by mitigating the impact of frequency-level artifacts
through frequency-level perturbation maps. Ju et al.(Ju et al.
2022) integrate global spatial information and local informa-
tive features in a two-branch model. AltFreezing by Wang et
al.(Wang et al. 2023a) leverages both spatial and temporal
artifacts for Face Forgery Detection. Approaches by Ojha et
al.(Ojha et al. 2023) and Tan et al.(Tan et al. 2023) utilize
feature maps and gradients, respectively, as general repre-
sentations. DIRE by Wang et al. (Wang et al. 2023b) intro-
duces a novel image representation by measuring the fea-
ture distance between an input image and its reconstruction
counterpart, aiming to alleviate generalization issues.

Method
Problem Definition
Due to the paucity of paired data, specifically an original
resolution Deepfake image and its compressed version, the
focus of our work is distinct from previous studies. Con-
sequently, to concisely and vividly explain our method, we
must adapt the common problem definition used in previ-
ous works. Given a dataset D = {(xi, yi)}Ni=1, it comprises
two types of images: real images xr and Deepfake images
xf , with the corresponding labels y ∈ {0, 1} representing
real or fake. Subsequently, 20% of the data in D is randomly
chosen to undergo a JPEG compression operation, denoted
as Pc, maintaining about 60% image quality. The original
versions of these images and the rest of the data in D are
denoted as P and P̃ , respectively. Therefore, we can rewrite
the composition of the dataset as Dtrain = P ∪ Pc ∪ P̃ .

As for the inference stage, there are two types: quality-
aware and quality-agnostic inference. In the first type,
quality-aware inference, the images of the testing set Dtest
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Figure 2: Overview of the proposed Open-world Deepfake Detection Network (ODDN). The ODDN contains two core modules:
Open-world Data Aggregation (ODA) and compression-discard Gradient Correction (CGC).

are compressed using the same operation as Pc. In the sec-
ond type, quality-agnostic inference, the images of the test-
ing set Dtest are compressed using various operations to
mimic an open-world scenario where the compression type
is unknown. The lack of paired data makes it much harder
to improve model robustness, creating significant challenges
for various efforts, including state-of-the-art approaches.

Network Framework
As illustrated in Figure 2, the proposed ODDN framework
comprises two core modules: ODA and CGC. Within the
ODA module, data operations are conducted on two types
of datasets: 80% unpaired data and other 20% paired data.
The unpaired data is aligned using feature-center points,
while the paired data is processed using a classic method.
The CGC module ensures optimization in the correct direc-
tion by integrating gradient correction during the removal of
compression-sensitive information. By leveraging a multi-
layer adversarial learning mechanism, the framework effec-
tively confounds compression-related characteristics, allow-
ing the detection model to focus on compression-insensitive
information. And self-Attention structure is employed to at-
tend to distinct features that are required by different down-
stream tasks. This approach significantly enhances the gen-
eralization capability of deepfake detection models.

Open-world Data Aggregation
The ODA module primarily involves distinct processing of
unpaired and paired input data in open-world scenarios.

Solution for the unpaired data. Unlike paired data, un-
paired data lacks fine-grained correlations between the com-
pressed and corresponding original images, requiring alter-
native alignment methods to effectively utilize the abundant
unpaired data resources. We aim to establish coarse-grained
correlations in unpaired data, which lack strong connections,
by clustering true and false images. Specifically, for a given
batch of input, we calculate four aggregation centers: the real
images Ct, the compressed real images Ct

cmp, the fake im-
ages Cf , and the compressed fake image Cf

cmp. The defini-

tion formulas for these four quantities are as follows:

Ct =
ΣNt

i=1h
H
i

N t
, Ct

cmp =
Σ

Nt
cmp

i=1 hH
i

N t
cmp

(1)

Cf =
ΣNf

i=1h
H
i

Nf
, Cf

cmp =
Σ

Nf
cmp

i=1 hH
i

Nf
cmp

(2)

where N t, N t
cmp, Nf , Nf

cmp represent the respective counts
of images belonging to four distinct classes within a batch,
hH
i is the feature obtained from the self-attention block.
Subsequently, we enlarge the separation among these

cluster centers to improve the distinction between real and
fake images, making it easier for the detection model to ac-
curately recognize them. Specifically, to enable our model
to effectively classify deepfakes, even in their compressed
forms, we strategically increase the distance between the
cluster centers of Ct and Cf , as well as the distance Scmp

between the compressed clusters Ct
cmp and Cf

cmp. The de-
tailed formulas are as follows:

S =
1

1 + Σd
i=1

√
(Ct

i − Cf
i )

2

(3)

Scmp =
1

1 + Σd
i=1

√
(Ct

i,cmp − Cf
i,cmp)

2
(4)

where d denotes the dimension of the hidden features.
The sum of these two types of distances, Scmp and S, can

be considered as the alignment loss Ldis for unpaired data.
This loss function not only increases the separation between
real and fake images but also promotes the aggregation of
images within the same class. For greater clarity, the align-
ment loss of unpaired data can be expressed as follows:

Lunpair = S + Scmp (5)

Solution for the paired data. Following the previous
work (Le and Woo 2023), we observe that the Hilbert-
Schmidt Independence Criterion (HSIC), a metric for mea-
suring correlation, is an effective method for maximizing de-
pendency among images of varying quality. This approach



allows the model to learn intricate distribution relationships
between paired images. Given the scarcity and value of
paired data, we continue to apply HSIC to paired data, as
it is a method that can fully exploit the useful information
within these pairs. The formula is as follows:

Lpair = ̂HSIC(hE
c , h

E) (6)

where hE
c and hE represent the features of the compressed

image and the corresponding original image within the
paired data, respectively, as output by the image encoder.

Compression-discard Gradient Correction
This module classifies true and false images using binary
cross-entropy loss to distinguish deepfakes, thereby enhanc-
ing its ability to detect and identify synthetic content. This
process can be formulated as follows:

Ltf = Lbce(Htf (h
H
i ), yi) (7)

where Lbce represents the binary cross-entropy loss, Htf is
the head layers of the true/false classification, hH

i is the fea-
ture obtained from the self-attention block, and yi is the label
for the corresponding input sample.

To effectively handle various compression methods in
open-world OSN scenarios, the ideal criterion for discrim-
ination should be insensitivity to compression. Thus, we
exploit the adversarial learning mechanism, performing ef-
fective confusion for discarding the compression informa-
tion. We assume that compressed images inherently carry
a unique signature or fingerprint characteristic of the com-
pression method used, such as JPEG compression. When
training on a dataset of compressed images, the model may
learn this fingerprint, potentially introducing biases and dis-
torting performance. Our goal is to develop an encoder that
maximizes the extraction of features related to fake artifacts
while minimizing the inclusion of compression fingerprints.
This approach enables the encoder to distinguish between
real and fake images, regardless of the compression applied.
Inspired by domain-adversarial training of neural networks,
we introduce an additional downstream task and use a gra-
dient reversal layer to achieve this goal.

Similarly, the compression-discard loss functions much
like the true/false classification branch but differs in data
processing. After passing through the image encoder, only
the features of paired data are input the compression-discard
branch, where they are assessed to determine whether they
have been compressed. This operation is defined as follows:

Lcmp = Lbce(Hcmp(h
H
i ), yi) (8)

where y ∈ {0, 1}, representing compressed or not and Hcmp

is the head of the compression-discard branch.
Furthermore, the gradient reversal layer inverts the gradi-

ent as it passes through. Consequently, when the gradient of
Lcmp propagates through the network, the gradients in the
encoder and the compression-discard branch have opposite
directions but the same magnitude. This operation forces the
encoder to discard compression-related information, while
the remaining components of the compression classification
branch continue to be optimized for detection. The final loss

function for the training process is a weighted sum of the
above loss functions:

Lall = Lunpair + αLpair + Ltf + Lcmp (9)

where α is hyper-parameter that balance the contributions
of each component to the overall loss. It is worth noting
that GCM effectively leverages valuable information, par-
ticularly by utilizing the numerous unpaired data. Addition-
ally, the structure of the branches within GCM is flexible,
allowing for the incorporation of other desired models.

However, with many directions negatively correlated
with the gradient direction of the loss Lcmp, how can we
identify the most suitable direction? Despite the afore-
mentioned mechanism forcing the encoder to optimize in
the reverse gradient direction of Lcmp, conflicts often arise
between this direction and other gradients. Therefore, it’s
essential to find a way to align the reverse gradient with
other gradients. PCGrad(Yu et al. 2020) offers a solution
by projecting conflicting gradients onto the normal vector
of another, ensuring constructive interactions among non-
conflicting gradients. Inspired by this, we exploit the con-
flicting gradients projection mechanism to align and facili-
tate interactions between distinct gradients, ensuring the op-
timization process remains focused on directions that pos-
itively impact the main task. The comprehensive gradient
calculation formula is as follows:

∇E = P(∇(Lpair + Lunpair + Ltf ),−∇Lcmp) (10)

where ∇E represents the total gradient calculated for the en-
coder, ensuring that the gradients are optimized for optimal
performance. The symbol P denotes the conflicting gradi-
ents projection, which is responsible for projecting conflict-
ing gradients onto the normal vector of each other, thereby
facilitating interactions among the gradients involved.

Experiments
Settings
Datasets: To ensure a consistent basis for comparison, we
employ the training set from ForenSynths to train the detec-
tors, in line with the baselines (Wang et al. 2020; Jeong et al.
2022a,c). This training set comprises 20 distinct categories,
each featuring 18,000 synthetic images generated using Pro-
GAN, alongside an equal number of real images sourced
from the LSUN dataset. For evaluation, we utilized a com-
prehensive collection of 17 commonly used datasets. The
first 8 datasets are derived from the ForenSynths (Wang et al.
2020), including images generated by eight distinct genera-
tion models. The remaining 9 datasets are derived from the
GANGen-Detection (Tan and Tao 2024), comprising images
generated by nine additional GANs.
Implementation Details: We use the Adam (Kingma and
Ba 2015) as the optimizer with a learning rate of 2 × 10−4

and a batch size of 128. For the hyper-parameter α, we ad-
here to the traditional setting, namely 0.004. In our frame-
work, encoder can be any standard image classifier, such
as Res50, to extract features from the image. In order to
maintain consistency with previous endeavors(Le and Woo
2023), we employ ResNet-50 (Res50) as our encoder. Our



Method Info-
GAN

BE-
GAN

Cram-
GAN

Att-
GAN

MMD-
GAN

Rel-
GAN

S3-
GAN

SNG-
GAN

STG-
GAN

Pro-
GAN

Style-
GAN

Style-
GAN2

Big-
GAN

Cycle-
GAN

Star-
GAN

Gau-
GAN

Deep-
fake

Mean
Acc

MeNet(2018) 50.5 50.6 50.0 50.5 50.2 50.4 49.3 50.2 50.9 51.4 51.5 54.2 52.0 53.4 50.6 53.4 50.0 51.2
FF++ (2019) 74.4 30.6 75.5 64.2 76.3 61.5 54.9 71.8 82.2 90.4 60.4 65.2 60.5 80.0 74.4 72.3 51.0 67.3
F3Net (2020) 65.9 42.6 68.9 55.9 63.7 56.3 53.1 62.1 74.9 84.1 56.7 60.4 56.1 77.8 71.2 68.6 50.4 63.2
MAT (2021) 54.5 49.8 59.7 50.1 57.8 50.8 52.8 52.8 56.7 85.7 52.4 53.1 52.9 72.2 57.6 67.6 51.1 57.7
SBIs (2022) 56.6 51.9 63.4 50.1 59.3 50.6 62.2 52.1 53.0 88.4 51.2 52.4 55.4 74.8 53.6 78.3 51.1 59.3
ADD (2022) 52.0 51.0 59.0 50.7 57.2 52.7 44.7 52.3 53.1 70.9 48.0 48.4 51.7 72.4 55.7 64.7 51.3 55.2
QAD (2023) 74.8 53.7 79.6 60.1 78.3 66.5 56.0 76.3 80.4 86.3 55.4 57.2 59.1 77.1 79.9 65.8 55.8 69.2

ODDN (ours) 73.1 42.3 76.1 71.2 75.9 72.5 60.5 75.5 85.0 91.3 64.5 69.4 64.3 80.8 78.0 77.3 54.3 71.4

Table 1: The quality-aware experimental results across 17 well-known datasets under the 2-class training data setting.

Method Info-
GAN

BE-
GAN

Cram-
GAN

Att-
GAN

MMD-
GAN

Rel-
GAN

S3-
GAN

SNG-
GAN

STG-
GAN

Pro-
GAN

Style-
GAN

Style-
GAN2

Big-
GAN

Cycle-
GAN

Star-
GAN

Gau-
GAN

Deep-
fake

Mean
Acc

MeNet(2018) 49.5 46.2 52.6 51.3 53.0 53.8 50.4 51.8 54.2 53.3 49.6 53.9 55.1 50.9 52.3 51.7 45.0 51.4
FF++(2019) 69.5 26.9 80.3 66.8 79.2 69.9 56.2 75.1 84.4 93.6 62.5 60.8 58.5 80.9 78.5 71.00 52.8 68.7
F3Net(2020) 61.0 41.9 65.8 52.9 63.8 55.5 53.8 59.6 71.5 92.2 76.0 59.1 55.9 57.9 71.8 66.0 52.1 62.4
MAT(2021) 57.9 46.9 64.2 50.8 63.4 52.4 52.1 56.2 61.8 90.8 54.2 53.9 52.4 73.1 61.4 64.8 51.2 59.5
SBIs (2022) 60.2 55.7 74.4 50.2 67.1 54.6 61.4 53.0 57.2 96.0 57.4 53.0 55.4 77.6 60.1 74.9 50.6 62.5
ADD (2022) 51.7 50.7 57.3 51.3 55.9 52.4 45.2 51.2 52.4 73.5 49.9 50.1 52.2 70.7 54.4 66.4 51.2 55.3
QAD (2023) 79.9 37.5 79.5 67.4 76.8 71.7 58.0 79.0 83.5 92.7 64.7 68.7 64.0 81.8 80.3 66.3 52.9 70.9

ODDN (ours) 80.6 38.6 80.7 65.8 78.8 71.1 60.5 76.7 85.8 94.0 67.7 69.9 66.7 84.9 80.5 75.2 54.2 72.6

Table 2: The quality-aware experimental results across 17 well-known datasets under the 4-class training data setting.

Method Info-
GAN

BE-
GAN

Cram-
GAN

Att-
GAN

MMD-
GAN

Rel-
GAN

S3-
GAN

SNG-
GAN

STG-
GAN

Pro-
GAN

Style-
GAN

Style-
GAN2

Big-
GAN

Cycle-
GAN

Star-
GAN

Gau-
GAN

Deep-
fake

Mean
Acc

MeNet(2018) 46.3 44.3 59.7 60.0 59.8 58.7 47.8 56.3 69.1 55.0 51.0 49.9 53.9 60.5 64.8 49.9 51.1 53.3
FF++(2019) 66.9 37.7 79.4 56.6 77.1 60.5 55.0 69.2 79.8 87.8 55.1 59.8 57.1 79.9 75.6 71.6 52.0 66.0
F3Net(2020) 58.0 48.8 61.9 51.5 59.3 53.2 52.0 54.9 61.1 83.4 52.7 54.9 55.0 73.7 65.9 66.7 52.4 59.3
MAT(2021) 54.2 49.9 59.6 50.5 57.6 51.2 52.1 52.7 57.8 86.1 52.3 53.0 52.7 70.3 58.2 68.0 51.3 57.7
SBIs (2022) 56.6 51.9 63.4 50.1 59.3 50.6 62.2 52.1 53.0 88.6 51.3 52.4 55.7 76.0 53.9 78.1 51.2 59.4
ADD (2022) 51.8 50.9 59.0 50.7 57.1 52.8 45.0 52.3 52.9 70.2 48.0 48.7 51.8 71.9 55.5 65.1 51.3 57.9
QAD (2023) 72.3 55.2 80.0 61.5 78.3 65.5 54.5 76.5 79.2 86.4 56.4 58.0 57.4 82.6 77.8 63.5 56.5 68.3

ODDN (ours) 72.1 44.1 76.8 68.1 76.5 73.3 58.0 75.6 83.5 90.8 61.1 65.9 63.9 83.5 77.0 72.9 55.0 70.7

Table 3: The quality-agnostic experimental results across 17 well-known datasets under the 2-class training data setting.

Method Info-
GAN

BE-
GAN

Cram-
GAN

Att-
GAN

MMD-
GAN

Rel-
GAN

S3-
GAN

SNG-
GAN

STG-
GAN

Pro-
GAN

Style-
GAN

Style-
GAN2

Big-
GAN

Cycle-
GAN

Star-
GAN

Gau-
GAN

Deep-
fake

Mean
Acc

MeNet(2018) 58.7 45.4 63.5 62.9 62.0 50.2 48.7 58.4 64.1 55.4 52.0 48.1 53.7 63.2 62.0 49.6 51.8 54.3
FF++(2019) 68.9 29.9 82.0 63.3 80.4 67.2 55.5 75.4 82.0 93.0 61.1 59.8 57.9 80.1 78.6 67.3 51.9 67.9
F3Net(2020) 62.0 43.4 65.8 53.2 64.1 56.7 55.4 58.8 67.7 92.5 76.6 62.3 56.8 60.5 71.0 71.3 51.1 63.4
MAT(2021) 52.2 49.3 62.5 50.6 60.3 51.7 53.3 53.9 58.6 92.2 54.4 54.9 54.0 76.5 59.4 68.4 51.0 59.4
SBIs (2022) 61.3 57.4 74.8 50.3 67.5 54.6 61.5 53.2 57.1 95.9 57.2 52.9 55.4 78.3 59.3 74.6 50.7 62.6
ADD (2022) 51.0 50.2 54.4 50.3 53.4 50.7 46.2 50.5 50.9 75.8 51.4 51.6 52.7 72.6 52.3 66.4 50.7 55.0
QAD (2023) 76.7 46.4 79.6 68.5 77.1 73.6 58.3 76.3 81.0 90.2 65.3 71.3 64.6 81.8 77.1 66.7 55.1 71.0

ODDN (ours) 80.4 35.1 81.0 68.7 78.2 74.5 62.2 77.5 81.7 91.7 69.2 70.4 68.0 78.8 73.4 73.8 55.3 72.1

Table 4: The quality-agnostic experimental results across 17 well-known datasets under the 4-class training data setting.

method is implemented using PyTorch on Nvidia GeForce
RTX 3090 GPU. We adhere to the commonly used evalua-
tion metrics accuracy (Acc), following common researches.

Quality-aware Experiments
Following the classic setting, we utilize two groups of train-
ing sets: a 2-class set (“chair” and “horse”) and a 4-class

set (“car”, “cat”, “chair”, and “horse”) from the ForenSynths
dataset. The results are presented in Table 1 and 2. To emu-
late the composition of OSN data in open scenarios, 20% of
the data were compressed using operations adopted by pop-
ular OSN with constant rate quantization parameters of 40 to
create paired data. The remaining 80% were unprocessed to
simulate scenarios where unpaired data is significantly more



prevalent than paired data in OSN. It should be clarified that
if there are baselines specifically designed for paired data,
unpaired data should also be utilized for classification pur-
poses, rather than being left idle, to ensure a fair compari-
son. During the inference stage, we compress entire images
of the testing set by the same compression as the training set
and subsequently evaluate each compressed image.

The 2-class and 4-class experimental results presented in
Table 1 and 2 compare the performance of various detec-
tion methods across 17 different datasets, using the accuracy
metric (Acc) as the primary evaluation metric. As shown
in Table 1, in the 2-class experiment, the proposed ODDN
achieved the highest mean accuracy of 71.4%, signifi-
cantly outperforming other methods. For instance, QAD, the
second-best performer, achieved a mean accuracy of 69.2%,
while FF++ and F3Net had mean accuracies of 67.3% and
63.2%, respectively. The proposed method showed particu-
larly strong performance with specific GANs such as Pro-
GAN, STGGAN, and CycleGAN, achieving accuracies of
91.3%, 85.0%, and 80.8%, respectively. This indicates that
the method is highly effective in distinguishing between
real and fake images in a binary classification setup. More-
over, the method consistently performed well across most
datasets, achieving over 70% accuracy in 10 out of the 17.
This consistency across various datasets shows the robust-
ness and reliability of the ODDN in quality-aware scenarios.

As shown in Table 2, In the 4-class quality-aware ex-
periment, the proposed method again demonstrated superior
performance with the highest mean accuracy of 72.6%, fur-
ther confirming its effectiveness in more complex classifica-
tion tasks. QAD followed closely with a mean accuracy of
70.9%, maintaining its position as a strong competitor. Other
methods like FF++ and F3Net achieved mean accuracies of
68.7% and 62.4%, respectively, indicating a noticeable per-
formance gap between these methods and the top perform-
ers. The proposed method excelled in detecting images from
GANs like ProGAN, STGGAN, and CycleGAN, with ac-
curacies of 94.0%, 85.8%, and 84.9%, respectively. These
high accuracies highlight the deepfake detection capability
of the proposed DANN in another training data scenario.
Additionally, DANN showed consistent high performance
across most datasets, achieving over 70% accuracy in 11 out
of the 17 well-known datasets. This consistency and robust-
ness make it a reliable choice for quality-aware analysis of
the generated images in binary classification tasks.

Quality-agnostic Experiments
In this group of quality-agnostic experiments, the training
settings are the same with the above quality-aware exper-
iments, that is 2-class and 4-class. It should be noted that
the test images used here do not follow the compression ap-
plied to the training data. Instead, they are compressed us-
ing JPEG compression coefficients sampled from a normal
distribution ranging from 30 to 100, simulating open-world
scenarios that need to handling unknown compression meth-
ods. The evaluation results of the 2-class and 4-class quality-
agnostic experiments are shown in Table 3 and 4.

In the 2-class quality-agnostic experiment, the proposed
ODDN demonstrated remarkable performance with the

highest mean accuracy of 70.7%. This indicates its robust-
ness in identifying real versus fake images without ac-
counting for the quality of the generated images. Specifi-
cally, it excelled with GANs such as ProGAN (90.8% ac-
curacy), STGGAN (83.5%), and CycleGAN (83.5%). This
high level of performance across diverse GANs underscores
the method’s adaptability and effectiveness. QAD was the
second-best performer with a mean accuracy of 68.3%, mak-
ing it a reliable alternative but still falling short of the pro-
posed method’s overall effectiveness. Other methods like
FF++ and F3Net had mean accuracies of 66.0% and 59.3%,
respectively, indicating a significant performance gap be-
tween these methods and the top performers. These results
suggest that while multiple methods are viable for quality-
agnostic GAN detection, the proposed ODDN stands out for
its consistent and superior performance across baselines.

In the 4-class quality-agnostic experiment, the proposed
ODDN again outperformed others with the highest mean
accuracy of 72.1%. It achieved notable accuracies with
GANs such as ProGAN (91.7%), STGGAN (81.7%), and
CycleGAN (78.8%), further demonstrating its robustness in
handling more complex classification tasks. QAD followed
closely with a mean accuracy of 71.0%, reinforcing its reli-
ability but still trailing behind the proposed method. FF++
and F3Net had mean accuracies of 67.9% and 63.4%, re-
spectively, which, while respectable, highlight the superior
consistency and accuracy of the proposed method.

As illustrated in Fig. 3, these results underscore the
ODDN’s ability to deliver high performance consistently,
making it a highly effective choice for quality-agnostic anal-
ysis of deepfakes. The robustness across 17 different well-
known datasets in different training settings suggests its
potential for practical applications in open-world scenarios
where distinguishing GAN-generated content is crucial.

Ablation Study
The ablation study presented in the table evaluates the im-
pact of different components (ODA and CGC) on the perfor-
mance of the baseline method across the 17 datasets, using
mean accuracy (Acc) as the metric. The results are analyzed
in three configurations: the baseline, with ODA, and both.

The baseline achieved a mean accuracy of 69.4%, show-
ing strong performance across several GANs. Notably, it
performed exceptionally well with ProGAN (90.8%), STG-
GAN (84.8%), and CycleGAN (81.8%). However, there
were GANs where the baseline method’s performance was
less impressive, such as AttGAN (66.9%) and BEGAN
(40.9%). Adding ODA to the baseline resulted in an im-
provement in mean accuracy, increasing to 71.0%. This en-
hancement indicates that ODA positively contributes to the
model’s ability to distinguish between real and fake images.
Specific datasets like InfoMaxGAN, MMDGAN, and Style-
GAN2 saw noticeable improvements, with accuracy increas-
ing to 75.2%, 78.9%, and 62.8%, respectively. The improve-
ments were consistent across most datasets, demonstrating
the robustness of the ODA component. Further adding CGC
to the baseline with ODA configuration led to the high-
est mean accuracy of 71.4%. This configuration achieved
the best performance across datasets, indicating that the



Method Info-
GAN

BE-
GAN

Cram-
GAN

Att-
GAN

MMD-
GAN

Rel-
GAN

S3-
GAN

SNG-
GAN

STG-
GAN

Pro-
GAN

Style-
GAN

Style-
GAN2

Big-
GAN

Cycle-
GAN

Star-
GAN

Gau-
GAN

Deep-
fake

Mean
Acc

Baseline 74.1 40.9 78.9 66.9 77.0 70.6 57.4 77.3 84.8 90.8 58.8 61.4 60.1 81.8 79.7 70.6 53.1 69.4
+ ODA 75.2 39.0 80.2 63.9 78.9 73.3 59.7 77.2 84.3 92.8 62.8 62.7 62.3 83.3 80.0 78.1 54.1 71.0

+ CGC (ours) 73.1 42.3 76.1 71.2 75.9 72.5 60.5 75.5 85.0 91.3 64.5 69.4 64.3 80.8 78.0 77.3 54.3 71.4

Table 5: The experimental results of the ablation study. The settings are the same as 2-class quality-aware experiment above.

Figure 3: Performance comparison across 17 well-known datasets in quality-agnostic experiments (simulating the open-world
OSN scenario) is illustrated for both the 2-class (left figure) and 4-class (right figure) training settings.

combination of ODA and CGC significantly enhances the
model’s overall accuracy. The method excelled particularly
with ProGAN (91.3%), STGGAN (85.0%), and CycleGAN
(80.8%). The combined approach also improved perfor-
mance in datasets where the baseline method had lower ac-
curacy, such as BE-GAN and Cramer-GAN, demonstrating
its effectiveness in a broader range of scenarios.

Feature Distribution Visualization

To verify the consistency of invariant representation across
input quality, we visualized the feature distribution of the
baseline and ODDN using t-SNE (Van der Maaten and Hin-
ton 2008) in 3D, observing from six angles: front, rear, right,
left, up, and down (Figure 4). For the baseline model, com-
pressed deepfake features tend to cluster closely with other
features, making them difficult to distinguish from multiple
perspectives. This close proximity is likely a key reason for
the baseline’s reduced detection performance. In contrast,
ODDN significantly increases the separation between fea-
tures of different classes, with each class clearly occupying
distinct regions in at least one of the six observed directions.
This greater separation allows for more effective distinction
between features, leading to improved detection accuracy. In
summary, the proposed ODDN demonstrates superior gen-
eralization across varying input qualities, enhancing its per-
formance in distinguishing deepfakes.

Real Real:CMP Fake Fake:CMP

baseline

ours

Front Rear Right left Up Down

Figure 4: The feature visualization of baseline and ODDN.

Conclusion
In conclusion, this paper presents the ODDN, a novel ap-
proach designed to address the challenges of deepfake de-
tection in open-world scenarios, particularly on online so-
cial networks where unpaired data is prevalent. Through the
integration of two key modules: ODA and CGC, ODDN ef-
fectively handles the complexities associated with varying
data qualities and compression methods. The comprehen-
sive experiments are conducted across 17 popular datasets
under diverse test settings demonstrate that ODDN signifi-
cantly outperforms existing SOTA models.
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