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ABSTRACT

X-ray prohibited items detection of security inspection plays an

important role in protecting public safety. It is a typical few-shot

object detection (FSOD) task because some categories of prohibited

items are highly scarce due to low-frequency appearance, e.g., pis-

tols, which has been ignored by recent X-ray detection works. In

contrast to most FSOD studies that rely on rich feature correlations

from natural scenarios, the more practical X-ray security inspec-

tion usually faces the dilemma of only weak features learnable

due to heavy occlusion, color fading, etc., which causes a severe

performance drop when traditional FSOD methods are adopted.

However, professional X-ray FSOD evaluation benchmarks and

effective models of this scenario have been rarely studied in re-

cent years. Therefore, in this paper, we propose the first X-ray

FSOD dataset on the typical industrial X-ray security inspection

scenario consisting of 12,333 images and 41,704 instances from 20

categories, which could benchmark and promote FSOD studies on

such more challenging scenarios. Further, we propose theWeak-

feature Enhancement Network (WEN) containing two core mod-

ules, i.e., Prototype Perception (PR) and Feature Reconciliation (FR),

where PR first generates a prototype library by aggregating and

extracting the basis feature from critical regions around instances,

to generate the basis information for each category; FR then adap-

tively adjusts the impact intensity of the corresponding prototype

and forces the model to precisely enhance the weak features of

specific objects through the basis information. This mechanism

is also effective in traditional FSOD tasks. Extensive experiments

on X-ray FSOD and Pascal VOC datasets demonstrate that WEN
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Figure 1: Comparison of few-shot object detection tasks for

common data in natural scenario and X-ray data in industrial

scenario. Due to heavy occlusion and color fading of X-ray

data, the features of novel classes and base classes lack of

distinctiveness, causing wrong detection results.
outperforms other baselines in both X-ray and common scenarios.
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1 INTRODUCTION

With the increasing population density in public transportation

hubs, security inspection plays an important role in protecting

public security. Inspectors usually adopt X-ray scanners to check

the luggage of passengers for judgingwhether there exist prohibited

items, which may cause severe danger to the public. Recent works

[9, 17–19, 30, 31, 34, 40] mainly focused on improving the detection

performance based on large-scale training samples. However, these

works ignored that X-ray security inspection is a typical few-shot

detection task since the samples ofmany prohibited items categories

are highly rare due to low-frequency appearance, e.g., pistols.

Recently, researchers have devoted great efforts to solving the

few-shot detection problem: generating accurate representations

of objects from limited samples available during training [16, 20–

22, 24, 25, 28, 42–44]. Most of the existing few-shot learning meth-

ods [11, 15, 32, 33, 39, 41] focus on common scenarios and heavily

rely on rich feature correlations contained in the natural dataset.

However, X-ray few-shot detection of security inspection usually

faces the dilemma of very weak features available in training sam-

ples due to heavy occlusion, color fading, etc., which causes severe

performance drop when traditional FSOD models are adopted. The

aforementioned dilemma raises a challenging, meaningful, yet unex-

plored task: achieving satisfactory performance in extreme few-shot

detection scenarios, where learnable features are extremely weak.

Currently, relatively little progress has been devoted to this field

due to the lack of professional evaluation benchmarks, and simply

extending existing natural FSOD datasets is non-trivial owing to

the significant scenarios gap. Thus, this task requires researchers

to make breakthroughs in both constructing high-quality industrial

dataset and designing effective baselines.

To support the study of this important issue, in this paper, we

contribute the first industrial FSOD evaluation benchmark, named

X-ray FSOD dataset, by selecting the typical scenario, X-ray security

inspection. All the samples are generated by X-ray machines, where

the texture information of prohibited items is almost eliminated

by X-ray. X-ray FSOD dataset consists of 12,333 images, including

41,704 instances with bounding-box annotations of 20 common

categories, which are prohibited in aviation security inspection.

The number of categories and samples of the X-ray FSOD dataset

are consistent with the classical FSOD setting (e.g., Pascal VOC

dataset), and all the bounding-boxes are annotated by professional

security inspectors. We hope this dataset could serve a comprehen-

sive and reliable evaluation benchmark for models to overcome the

performance drop in X-ray FSOD scenario.

Besides, this paper also proposes theWeak-featuresEnhancement

Network (WEN) as the baseline, which contains two core modules,

i.e.,, Prototype Perception (PR) and Feature Reconciliation (FR). The

key motivation to overcoming the performance drop caused by

extremely weak features is to precisely enhance the weak features

by exploiting the basis information. Specifically, in the first step, PR

module generates a prototype library by aggregating and extract-

ing the basis feature from critical regions around instances. In the

second step, FR module then adaptively adjusts the impact intensity

of the corresponding prototype and forces the model precisely to

enhance the weak features of specific objects, through exploiting

the knowledge stored in the library above.

We summarize the contributions of this study as follows:

• We point out that the significant X-ray security inspection

is a typical FSOD task with weak features learnable. We con-

duct experiments to demonstrate that weak features could

cause severe performance drop in FSOD. Further, we propose

a challenging but interesting task that achieving satisfactory

performance in X-ray FSOD scenario.

• To support the research of this task, we contribute the first

practical benchmark, named X-ray FSOD dataset, by gather-

ing and annotating the images generated by X-ray inspection

machines. The category distribution follows the standard

settings of classical FSOD evaluation benchmark.

• To overcome the performance drop caused by the weak-

feature dilemma, we propose the WEN model, aggregating

and extracting the basis features from critical regions around

instances and precisely enhancing the weak features of spe-

cific objects by fusing the basis features extracted.

• We evaluate our method comprehensively on both the X-ray

FSOD dataset and Pascal VOC dataset, and the extensive

results demonstrate that the WEN model outperforms SOTA

methods on both X-ray and common scenarios.

2 RELATEDWORK

2.1 X-ray Prohibited Items Detection

X-ray imaging offers powerful ability in many tasks such as medical

image analysis [3, 6, 14] and security inspection. As a matter of fact,

obtaining X-ray images is difficult, so rare studies touch security

inspection in computer vision due to the lack of specialized high-

quality datasets. Several recent efforts [1, 2, 13, 17, 30, 35? ] have

been devoted to constructing such datasets. A released benchmark,

GDXray [17] contains 19,407 gray-scale images, part of which con-

tain three categories of prohibited items including gun, shuriken

and razor blade. SIXray is a large-scale X-ray dataset which is about

100 times larger than the GDXray dataset but the positive sam-

ples are less than 1% to mimic a similar testing environment and

the labels are annotated for classification. Other relevant works

[1, 2, 13] have not made their data available to download. Recently,

[35] proposed the first X-ray prohibited items detection dataset,

OPIXray dataset, which contains 8,885 X-ray images of 5 categories

of cutters and each instance is annotated by professional inspectors.

[30] constructed a larger one, the HiXray dataset, which contains

102,928 common prohibited items with bounding-boxes of 8 cate-

gories. In addition, [29] proposed the EDS dataset, which consists

of 14,219 images including 31,654 common instances from three

domains (X-ray machines), with annotations from 10 categories.

2.2 Few-shot Object Detection

Since the few-shot research had been proposed, existing studies

towards few-shot classification can be separated into two types

of methods, metric-learning-based and meta-learning-based. How-

ever, in contrast to classification, few-shot object detection (FSOD)

has been rarely studied. Recently, some researchers have made

preliminary attempts, such as MetaDet [33], FSDetView [37] etc.,

trying to attach ameta-learning strategy to existing object detection

networks. There are also a few methods based on metric learning

2013
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Figure 2: The natural and X-ray examples of all categories in X-ray FSOD dataset. Following the setting (20 classes totally,

including 15 base classes and 5 novel classes) of the classical FSOD dataset, Pascal VOC, we select 16 categories from existing

public dataset, including 5 from OPIXray, 5 from HiXray and 4 from EDS Dataset. Note that in this paper, we contribute

additional 6 categories to construct a standard X-ray FSOD evaluation benchmark.

[11, 41]. At first, finetune-based approaches are considered as base-

lineswith better performance thanmeta-learning-based approaches.

LSTD [4] adopts transfer knowledge and background depression

regularization to avoid overfitting. TFA [32] only finetunes the

last few layers of the detector and outperforms all the prior meta-

learning-based approaches. MPSR [36] develops an auxiliary branch

to generate multi-scale positive samples and to refine the prediction

at various scales. However, all of these methods are exhausted all

the efforts to generate accurate feature representation as the basis

information to localize and recognize the objects. Therefore, in real

industrial scenario where the basis features are extremely weak,

these traditional methods cannot generate accurate representation

and fail to achieve satisfactory performance. As a result, exploring

how to guide models enhance the basis features and generate accu-

rate representation, to achieve robust and satisfactory performance

in real industrial FSOD scenarios, is meaningful.

3 THE X-RAY FSOD DATASET

As illustrated above, a dataset is significant to boost a research and

few researchers are involved in this field because there lacks of

professional benchmark for evaluating the performance of models.

Thus, in this section, we contribute the first weak-feature FSOD

evaluation benchmark, X-ray FSOD dataset, by selecting the typical

scenario, X-ray security inspection.

3.1 Construction Details

Category Selection. As the famous Pascal VOC dataset demon-

strates, a standard FSOD evaluation benchmark usually consists of

20 categories, while 15 are the base classes and other 5 are novel

classes during evaluation. Thus, after the X-ray security inspection

scenario is selected, we investigate all the public X-ray prohibited

items detection dataset, OPIXray [35], HiXray [30] and EDS [29]

dataset. Considering the number of instances is no less than 1000, as

Figure 2 illustrated, we select 16 categories from the three dataset,

including 5 from OPIXray, 5 from HiXray and 4 from EDS Dataset.

Additionally, we contribute other 6 categories to construct a stan-

dard industrial FSOD evaluation benchmark. The motivation of

choosing these 6 categories of objects is due to the fact that they

are the most commonly-witnessed prohibited items in airport.

Data Cleaning. During our exploration, we found that some

categories in one public dataset also exist in other datasets, but not

annotated. For example, the laptop is a category that annotated in

HiXray, but it exists in the samples of OPIXray but not annotated.

This phenomenon may cause potentially unfair evaluation results.

Thus, we conduct the data cleaning progress by annotating all the

instances of the total 20 categories, including 14 of the three public

dataset and 6 we contributed in this paper.

Annotation Quality Control. All the bounding-boxes are man-

ually annotated. Specifically, there is a preprocess pipeline (follow-

ing Pascal VOC [5]) to control the image quality as follows, (1) we

first hosted a 4-hour training course to teach 5 annotators skills to

identify prohibited items from X-ray images accurately; (2) the 5

annotators then labeled our dataset using the “labelme" 1 tool (each

image annotation took 2 minutes, and each annotator spent 8 hours

per weekday); (3) each image is annotated twice and checked by a

third inspector so that the errors are minimized.

3.2 Data Properties

Instances per category. Instances per category refer to “the

number of instances of specific class in the dataset". X-ray FSOD

dataset contains 12,333 X-ray images, 20 categories of totally 41,704

annotated instances. We separate the images into a training set

with 9,867 and a testing set with 2,466 images. The number of

instances for each category is shown in Table 1, and the proportion

1http://labelme.csail.mit.edu/Release3.0/
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Category FO ST SC UT MT LA LI CH1 CH2 PH

Training 213 968 1,294 602 1,623 2,381 938 1,729 1,836 4,903

Testing 45 171 240 153 324 543 177 340 384 1,063

Total 258 1,139 1.534 755 1,947 2,924 1,115 2,069 2,220 5,966

Category PB GB PR UM BA IS MC MB NC AL

Training 579 2,948 910 1,874 4,248 1,337 1,372 1,865 800 1,888

Testing 140 603 216 431 895 302 331 424 200 414

Total 719 3,551 1,126 2,305 5,143 1,639 1,703 2,289 1,000 2,302

Table 1: The statistics of category distribution. The short

names in this table correspond to the full names in Figure 2

in order. The names marked in red are the new categories.
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Figure 3: The proportion of category distribution. To make

the small percentages more readable, the right pie illustrates

the 7 categories with small proportion from the left.
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Figure 4: The distribution of numbers of instances per image.

of different categories can be seen in Figure 3. For diversity, we

prepare ∼30 different objects for each category we contributed.

Instances per image. Instances per image refer to “the number

of instances for all classes contained in an image". To simulate the

distribution of objects in luggage in real scenario to the greatest

extent, the number of instances annotated in each image is not equal.

Each image contains at least one instance, up to 23, on average of

3.38. Figure 4 illustrates the distribution of numbers of images

containing different numbers of instances.

4 METHOD

In this section, we elaborate on the details of the proposedWeak-

features Enhancement Network, i.e., WEN model, for weak-feature

FSOD scenarios, where usually face the dilemma of heavy occlusion,

color fading, etc.Previous FSOD methods failed to achieve satisfac-

tory performance due to the basis features are extremely weak.

Inspired by the fact that prototype learning can aggregate the basis

features, we propose the WEN, containing two core modules, i.e.,

Prototype Perception (PR) and Feature Reconciliation (FR), which

generates a prototype library by aggregating and extracting the

basis feature from critical regions around instances, and adaptively

adjust the impact intensity of the corresponding prototype and

forces the model to precisely enhance the weak features of specific

objects, receptively.

We will start with the problem analysis of the industrial few-shot

object detection setting. Then we will introduce the architecture

of our WEN in Section 4.2, including two core modules, Prototype

Perception (PR) and Feature Reconciliation (FR) in Section 4.2.1 and

Section 4.2.2, respectively. Finally, in 4.3, we illustrate the training

process of the network in detail.

4.1 Problem Analysis

FSOD methods based on fine-tuning mainly include a backbone

network E for extracting representative features for an input image,

a Region Proposal Network (RPN) R for producing and selecting

proposals, and a detector denoted as D. These methods exploits the

abundant characteristics of base classes to guide the network ex-

tract accurate representations, which are the basis features f (b) . The

ability learned to represent basis features from base classes can be

symbolized as 𝜃
(E,R,D)
L(b)

. In the process of training novel classes, the

ability learned of representing novel classes by leveraging knowl-

edge from base classes can be formulated as follows:

θ
(R,D)
(n)

= θ
(R,D)
L(b)

+ ∇L(n) ,

where θ
(R,D)
L(b)

refers to that the parameters of the backbone net-

work E are frozen after the base samples trained. ∇L(n) refers to

distinctive knowledge of the novel classes.

In FSOD task, the basis features generated for the novel and

base classes, f (n) and f
(b) , are both extracted by the backbone

θ
(E)
L(b)

. Note that in X-ray scenario with weak feature learnable,

due to heavy occlusion, color fading, etc.f (n) outputted by θ
(E)
L(b)

and f
(b) cannot be discriminated directly. This dilemma confuses

the detector to make a distinction between novel and base classes,

resulting in the performance drop. Therefore, the key to handle this

challenge is to enhance the basis features of novel classes, making

them having enough distinctiveness to base classes.

4.2 The Architecture of WEN

In figure 5, the model we proposed is implemented by adding two

core and efficient modules, i.e., Prototype Perception (PR) and Fea-

ture Reconciliation (FR), in the base detection framework. We select

the base framework including a backbone network E for extracting

representative features for an input image, a Region Proposal Net-

work (RPN) R for producing and selecting proposals, and a detector

denoted as D.

Specifically, PR module first generates a prototype library by

aggregating and extracting the basis feature from critical regions

around instances. FR module then adaptively adjusts the impact

intensity of the corresponding prototype and forces the model to

precisely enhance the weak features of specific objects.
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Figure 5: The network structure of the Weak-features Enhancement Network (WEN). WEN contains two core modules, i.e.,

Prototype Perception (PR) and Feature Reconciliation (FR). In step 1, training samples are exploited to generate the prototype

library by aggregating critical regions around instances. In step 2, the weak features of input instances are prewisely enhanced

by adaptively adjusting the impact intensity of the corresponding prototype from the library generated in step 1.

4.2.1 Prototype Perception. To aggregate the basis information to

enhance the weak features, we try to discover a proper dimension

to distinct novel classes from base classes. We guide the network R

project these features, f (b) and f
(n) , into a suitable feature space.

Inspired by the fact that prototype learning can aggregate discrimi-

native representations that are robust against variation, we exploits

the graph-based prototype aggregation method to extract the new

basis features. By optimizing the loss of these prototypes, we make

the category prototype vector tend to be orthogonal, so as to highly

distinguish all categories.

First, given a batch of imagesX, for each object inside the images,

we construct a relation graph setG(𝑖) = {G(𝑖1) ,G(𝑖2) , . . . ,G(𝑖𝑛) }, by

structuring the proposals generated around each object 𝑖 generated

by the network R. For a specific graph G(𝑖) = {V(𝑖) , E(𝑖) }, where

V(𝑖) = {𝑖 (𝜏1) , 𝑖 (𝜏2) , . . . , 𝑖 (𝜏𝑛) } is the proposal set of the object 𝑖 and

E(𝑖) is the edge set of each proposal and its corresponding ground-

truth in V(𝑖) . In the first step, we filter out unqualified proposals

and aggregate the rest proposals of the object 𝑖 to generate the

most accurate feature map, i.e.,, the object prototype Ω (𝑖) , that we

consider to represent the object 𝑖 . This process is formulated as:

Ω (𝑖) = ���
𝑁 (𝜏 )∑
𝑛=1

IoU(𝑖 (𝜏𝑛) ,G(𝑖) ) · 𝑖
(𝜏𝑛)��� /

𝑁 (𝜏 )∑
𝑛=1

IoU(𝑖 (𝜏𝑛) ,G(𝑖) ) (1)

where 𝑖 (𝜏𝑛) refers to the 𝑛-th proposal around of the object 𝑖 , G(𝑖)
refers to the ground-truth of the object 𝑖 . 𝑁 (𝜏) refers to the number

of proposals around the object 𝑖 and Ω (𝑖) refers to the prototype of

object 𝑖 . Inspired by [38], we choose IoU of the proposal 𝑖 (𝜏𝑛) and
the the ground-truth G(𝑖) as the measured metric. Note that we

exploit the same operation to get category probability prototype

𝑃 (𝑖) for each object 𝑖 .
In the second step, for each class 𝑘 of the input image x, sim-

ilarly, we construct a relation graph set. This step generates the

category prototype by the similar operation as the first step. After

the two steps operation, the graph generates a prototype library

Ω
(𝑘) = {Ω (𝑘1) ,Ω (𝑘2) , . . . ,Ω (𝑘𝑛) }. Each element in Ω

(𝑘) represents

the prototype of one category of both base classes and novel classes.

In each epoch of training, the prototypes generated from the in-

put image updates the prototype library Ω
(𝑘) . Thus, at the end of

each round of training, the process of updating the library can be

formulated as follows:

Ω
(𝑘)
(𝑙)

=

⎧⎪⎪⎨⎪⎪⎩
Ω (𝑘)
(𝑙)

, 𝑙 = 1

𝛼 · Ω (𝑘)
(𝑙)

+ (1 − 𝛼) · Ω
(𝑘)
(𝑙−1)

, 𝑙 > 1
(2)

where 𝛼 ∈ [0, 1] refers to a super parameter. Ω
(𝑘)
(𝑙)

refers to the

category prototype of 𝑘 in the 𝑙-th training.

Finally, to achieving the goal that discovering a proper dimen-

sion to distinct novel classes from base classes, we try to guide the

network R to project these features into a suitable feature space by

minimizing the cosine distance of each two categories. By minimiz-

ing the cosine distance, different categories of prototype vectors

can gradually be orthogonal, so as to search the proper feature di-

mension that can fully separate all of these categories. The process

of projection can be formulated as follow:

L𝑝 =

∑𝑁𝑘
𝑖=1

∑𝑁𝑘
𝑗=1, 𝑗≠𝑖 𝜙

(
Ω (𝑖) ,Ω ( 𝑗)

)
𝑁𝑘

�(𝑁𝑘 − 1)
(3)

where L𝑝 refers to the average distance of each two categories

in the whole categories, which is the loss of the PR module. 𝜙 (�)

refers to the distance calculated by the consine function and 𝑁𝑘
refers to the number of elements of the Ω. Thus, by minimizing L𝑝 ,

elements in Ω
(𝑘) tend to be orthogonal gradually. After optimized,

the final prototype library is generated as Ω = {Ω (1) , · · · ,Ω (𝐾) }.

4.2.2 Feature Reconciliation. Inspired by the fact that the amount

of information lost for different categories of objects under X-ray is

quite different, we consider that different categories of objects have

different requirements to obtain distinguishable features from pro-

totypes. Therefore, in order to avoid the over-fitting problem caused

by excessive basis features, it is necessary to design a fusion method

that absorbing different amounts of the basis features according

2016
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to the category to which the object belongs. In this module, the

first step is to determine which prototype feature of the prototype

library Ω should be absorbed for a proposal feature f(R) generated

by the network R. Here, we adopt the method that comparing f(R)

with each element Ω (𝑖) ∈ Ω and selecting the one Ω (𝑘) whose

distance is closest.

Regrading the fusion methods, there are mainly two types, linear

and non-linear. We have tried these two methods respectively. The

linear method can be formulated as follows:

f(𝑟 ) = 𝛼 · Ω (𝑘) + f(R) (4)

where f(𝑟 ) refers to the feature map outputted by the FR module,

which is the final feature map extracted from the input image x and

fed into the detector D. f(R) is the feature map outputted by the

region proposal network R, which represents initial object feature.

𝛼 is a linear parameter, which is artificially set.

In view of the complexity of various feature under X-ray, linear

methods are unable to achieve satisfactory performance. Thus, we

exploit the convolutional network with activation function layer to

adaptively assign the impact intensity of the corresponding proto-

type and forces the model to precisely enhance the weak features of

specific objects. Specifically, we adopt a 1*1 convolutional network

F, to non-linearly absorb the information inside the prototypes gen-

erated by the PR module. For a category 𝑘 , the absorb information

𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣w,b (Ω
(𝑘) )) represents the amount of basis feature that

the model requires from the prototype when this category detection

achieves the best performance. This nonlinear projection process

can be formulated as follows:

f(𝑟 ) = 𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣w,b (Ω
(𝑘) )) + f(R) (5)

where f(𝑟 ) refers to the feature map outputted by the FR module,

which is fed into the detector D.w, b refers to the parameters of the

1*1 convolutional network. 𝑅𝑒𝐿𝑈 refes to the activation function

layer. f(R) is the feature map outputted by the region proposal

network R, which represents input instance feature.

4.3 Network Training

Our WEN adopts the classical two-stage fine-tuning approach[32]

for few-shot detection as basic training strategy, which is the most

widely adopted in previous studies. The two-stage fine-tuning ap-

proach usually consists of the base-training stage and the fine-

tuning stage. In this section, we elaborate the detailed loss function

of the both two stages.

In the base-training stage, the WEN is trained only on the base

classes with the standard loss function of Faster R-CNN[26]. This

process can be formulated as follows:

L𝑡𝑜𝑡𝑎𝑙 = L𝑟𝑝𝑛 + L𝑐𝑙𝑠 + L𝑙𝑜𝑐 , (6)

whereL𝑟𝑝𝑛 refers to a binary cross-entropy loss for RPN to distin-

guish foreground from backgrounds and refine the anchors,L𝑐𝑙𝑠
refers to a cross-entropy for box classifier and L𝑙𝑜𝑐 is a smoothed

L1 loss for box regressor.

In the fine-tuning stage, the prototype library in PR module will

be generated and updated after each training iteration, to extract

the basis information for each category. FR module is applied to

assign the impact intensity of the corresponding prototype and

forces the model to precisely enhance the weak features of specific

objects through the basis information. Different from TFA[32], we

only freeze the parameters of backbone network to preserve the

basic ability of extracting the preliminary representations. The total

loss in fine-tuning stage can be formulated as follows:

L𝑡𝑜𝑡𝑎𝑙 = L𝑟𝑝𝑛 + L𝑐𝑙𝑠 + L𝑙𝑜𝑐 + 𝜆L𝑝 (7)

where L𝑝 refers to the loss of the PR module and 𝜆 refers to a super

parameter to balance the impact intensity of L𝑝 . Specifically, the

fine-tuning stage of the whole network training procedure can be

viewed as Algorithm 1.

Algorithm 1 Fine-tuning Stage of WEN’s training procedure

Input: Images with K-shot samples, the number of categories 𝑘 .
Output: The total loss value L𝑡𝑜𝑡𝑎𝑙

Generate the feature map set Φ.

Generate the proposal set V(𝑖) with𝑚 proposals.

Calculate the loss value L𝑟𝑝𝑛 .

for all 𝑎 = 1, 2, . . . , 𝜏𝑛 do

Calculate each instance prototype Ω (𝑎) .

Calculate each probability prototype 𝑃 (𝑎) .

end for

for all 𝑏 = 1, 2, . . . , 𝑘𝑛 do

Calculate each category prototype Ω (𝑏) .

Update the prototype library L(𝑏) .

end for

Calculate the loss value L𝑝 .

Generate the enhanced feature through Fussing operation.

Calculate the loss value L𝑟𝑒𝑔 and L𝑐𝑙𝑠 .

Calculate the total loss value L𝑡𝑜𝑡𝑎𝑙

5 EXPERIMENT

In this section, wewill introduce the extensive experiments to verify

the effectiveness of our proposed methods.

5.1 Experimental Settings

5.1.1 Experimental Scenarios. Firstly, to demonstrate the fact that

the weakening of features will lead to the decline of detection per-

formance in FSOD task, we simulate this weakening of features

by exploiting the edge detection method to generate the edge im-

ages from the classical FSOD dataset, Pascal VOC, whose samples

are gathered from natural scenario. We conduct experiments on

both natural and outline datasets to observe the performance drop.

Secondly, to compare with SOTA methods comprehensively, we

conduct the extensive experiments on both weak-feature scenario

and common natural scenario. In weak-feature scenario, we con-

duct the experiments on both the X-ray FSOD dataset and the

outline dataset. In common natural scenario, we conduct the exper-

iments on the famous Pascal VOC dataset. Finally, in Experiment

4, ablation studies are conducted.

5.1.2 Benchmark Settings. In Section 5.2 and Section 5.3 (the third

dataset), as for the Pascal VOC dataset, we follow the classical data

partition[10, 23, 27, 32, 37] with three random split groups and each

of the split randomly divide all 20 categories into 15 base classes

and 5 novel classes. Sufficient samples are available for each base

class during base-training, while only K = 1, 2, 3 ,5, 10 objects

sampled from the combination of the trainval sets of VOC2007 and

2017
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Method
Novel Set 1 Novel Set 2 Novel Set 3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FRCN+ft+full[32] 1.9 8.3 8.9 10.6 18.3 1.6 8.1 9.5 15.3 22.3 12.1 16.5 18.9 20.5 27.2

TFA (w/fc)[32] 12.1 16.8 22.3 30.7 36 14.7 20.6 21.4 27.7 35.3 15.6 21.3 22.4 30.6 38.2

TFA (w/cos)[32] 18.4 20.0 22.0 27.5 34.4 13.7 17.5 18.4 26.4 33.5 17.6 21.4 22.3 29.7 37.2

DeFRCN[23] 20.2 23.2 32.8 36.3 41.6 13.7 23.5 25.7 30.8 39.4 18.7 29.4 32.3 36.5 48.8

FSCE[27] 23.7 27.8 32.7 37.4 42.1 12 22.3 23 29.4 37.5 16.9 27.6 29.9 36.0 49.7

DCNet[8] 22.4 24.4 29.1 33.6 39.5 14.9 22.1 24.8 29.3 39.2 19.3 29.1 30.9 36.8 44.8

WEN (Ours) 30.5 32.2 38.9 43.9 42.3 17.2 27.7 28.2 31.2 39.0 22.2 32.4 35.2 41.6 50.8

TFA (w/cos)*[32] 11.4 17.4 20.0 27.0 34.3 10.4 16.9 21.1 28.1 34.6 13.6 23.0 25.6 33.1 38.9

FSCE*[27] 17.6 25.8 29.9 37.6 41.7 10.6 21.1 27.3 31.5 39.9 17.9 27.8 30.9 38.7 47.5

WEN (Ours)* 26.0 30.1 35.6 40.0 42.1 18.3 25.9 31.5 34.3 41.2 20.5 32.0 34.7 42.6 47.8

Table 2: The mAP50 results for novel classes of various few-shot detection methods on the X-ray FSOD dataset. All of the

results are averaged over multiple times of evaluations. ∗ denotes the average results over multiple random seeds.

VOC2012 versions can be utilized for each novel class. In addition,

the test set of VOC2007 is used for evaluation. In Section 5.3 (the

second dataset), we stick to the same data partition with Pascal

VOC. In Section 5.3 (the first dataset) and 5.4, consistent with the

Pascal VOC, we separate all 20 categories of X-ray FSOD dataset

into two parts randomly, where 5 categories are chosen as novel

classes with K=1, 2, 3, 5, 10 shot training samples, and the left 15 are

base classes. We evaluate methods on three different split groups,

i.e., {“charger 1”, “utility”, “phone”, “metal bottle”, “plastic bottle”},

{“charger 1”, “multi-tool”,“metal bottle”,“pressure”,“alcohol”}, and

{“laptop”, “multi-tool”,“glass bottle”,“metal bottle”,“nail clippers”}.

Figure 6: Two examples of images in VOC-outline dataset.

5.1.3 Implement Details. We employ the famous two-stage detec-

tion model Faster R-CNN[26] with FPN[12] and ResNet-101[7] as

the basic network. The parameters of the network are optimized by

a standard SGD with momentum 0.9 and weight decay 1𝑒−4. The
learning rate is set to 0.02 during the base-training stage and 0.01

during the fine-tuning stage. The IoU threshold when filtering low-

quality proposals in PR module is set to 0.7 and the 𝛼 for updating

prototype library is set to 0.2. The initial weight for w in Formula 6

is set to 0.1 and the 𝜆 of L𝑝 in Formula 8 is set to 0.5.

5.2 Effect of Weakening of Features

To verify that the weakening of features will lead to the decline

of detection performance in FSOD task, we conduct experiments

on both natural and edge samples dataset generated (named VOC-

outline dataset) to observe the performance drop. We first make a

performance comparison on original Pascal VOC and VOC-outline

by adopting three advanced FSOD methods and the results are

shown in Table 3. In Table 3, in all settings of instance shot, the

performance drops of the three methods are obvious. For example,

in 1 shot setting, the performance drops reach about 24.5%, 50.5%

and 51.5%, respectively. Thus, it is obvious that there exists a huge

performance drop caused by the weakening of features.

Method Dataset
Novel Set 1

1 2 3 5 10

TFA (w/cos)[32]
VOC 25.3 36.4 42.1 47.9 52.8

outline 19.1 20.7 28.7 35.2 43.5

FSCE[27]
VOC# 37.8 42.6 49.7 60.1 60.8

outline 18.7 23.2 31.2 43.2 46.5

DeFRCN[23]
VOC 40.2 53.6 58.2 63.6 66.5

outline 19.5 23.8 32.8 41.5 46.5

Table 3: Performance drop caused by feature weakening. #

denotes the result of the model in our implementation.

5.3 Comparison with SOTA methods

To evaluate the effectiveness of our method comprehensively, we

conduct the extensive experiments on both weak-feature scenario

and common natural scenario. In weak-feature scenario, we con-

duct the experiments on both the X-ray FSOD dataset and the

VOC-outline dataset mentioned in Section 5.2. In common natural

scenario, we conduct the experiments on the famous Pascal VOC.

5.3.1 X-ray FSOD dataset. We present the mAP50 results of the

novel classes on OFSD with three different data splits, which is

shown in Table 2. Table 2 demonstrates thatWENoutperforms other

SOTA FSOD methods obviously. On Novel Set 1, WEN outperforms

the second best result by 4.8% on average in all shot settings and

especially 6.8% in 1 shot setting. Our WEN especially achieves a

remarkable performance increase of 16.9% in maximum on 3 shot

and 13.2% in average over our baseline TFA (w/cos). Moreover, the

fact that the performances are achieved for multiple random seed

settings demonstrates the robustness of our method. Therefore, our

WEN model is capable to alleviate the performance drop of weak

features, caused by heavy occlusion, color fading in real industrial

scenario.

Another interesting phenomenon is that the performance im-

provement of WEN on the setting of fewer shot is larger than the

setting of more shots. For example, in Novel Set 1, the performance

improvement on the setting of 1 shot reaches 6.8% while 0.2% on

the setting of 10 shot. It is mainly because due to the scarcity of fine-

tuning samples, the demand for basis information on the setting of

fewer shots is more urgent than the setting of more shots.

5.3.2 VOC-outline dataset. As mentioned in Experiment 1 above,

the VOC-outline dataset we generated is a simulation of the fea-

ture weakening, compared to the natural Pascal VOC. Therefore,

to evaluate the effectiveness of our WEN model in weak-feature

scenario, we conduct the experiments on the VOC-outline dataset,

following the same setting of the experiments conducted on the

2018
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Method
Novel Set 1 Novel Set 2 Novel Set 3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

TFA (w/cos)[32] 25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6

TFA (w/cos)+WEN 35.6 38.7 45.8 52.9 59.7 20.1 29.1 32.1 37.3 45.2 26.2 34.8 38.0 49.4 53.7

DeFRCN[23] 40.2 53.6 58.2 63.6 66.5 29.5 39.7 43.4 48.1 52.8 35.0 38.3 52.9 57.7 60.8

DeFRCN+WEN 44.3 54.8 60.9 64.9 66.8 30.4 41.3 44.7 48.6 52.3 39.5 45.3 54.3 58.9 61.3

FSCE#[27] 37.8 42.6 49.7 60.1 60.8 20.1 24.5 40.7 43 48.2 33 40.5 45.8 53.9 57.6

FSCE+WEN 39.3 42.5 50.5 60.9 61.6 22.4 26.1 41.0 43.9 48.1 34.6 42.3 46.5 54.2 58.5

Table 4: Comparisons of traditional few-shot detection approaches and module-inserted approaches on three different data

splits of VOC benchmark. # denotes the results of the approach are recorded under our experimental settings.

X-ray FSOD dataset. The results are illustrated in Table 5. From Ta-

ble 5, our method achieves a stable performance improvement over

various FSOD baselines. The maximum performance improvement

is achieved in the setting of 3 shots.

Method
Novel Set 1

1 2 3 5 10

FRCN+ft[32] 11.5 12 20.2 30.2 39.6

TFA (w/fc)[32] 16.7 20.8 26.5 33.3 43.3

TFA (w/cos)[32] 19.1 20.7 28.7 35.2 43.5

DeFRCN[23] 19.5 23.8 32.8 41.5 46.5

FSCE[27] 18.7 23.2 31.2 43.2 46.5

WEN (Ours) 19.9 24.3 33.1 42.5 47.4

Table 5: The results of various models on the VOC-outline.

5.3.3 Pascal VOC dataset. On the two datasets above, we have

evaluated the ability of our WEN model and other FSOD methods

of handling the weak-feature dilemma and demonstrated the ef-

fectiveness of our WEN model. In this section, we conduct more

interesting experiments to explore the performance of our WEN

model in common natural scenarios, i.e., the instance features are

strong due to bright color and enough texture information, etc.Thus,

we conduct the experiments on the classical FSOD datset, Pascal

VOC, whose samples are gathered from natural scenario. Different

from the Experiment 2, in the case of strong features in Experiment

3, our feature-enhanced WEN model plays an auxiliary role in de-

tection. Therefore, we integrate our model on three different FSOD

methods, i.e., TFA (w/cos), DeFRCN and FSCE, and compare these

integrated models to their corresponding base models, instead of

directly comparing with these FSOD methods. The experimental

results are illustrated in Table 4.

From Table 4, we can draw the observation that there exist vari-

ous extents of improvement performance in most setting of shots

and splits on the integrated models, compared with the correspond-

ing baselines. In particular, WEN-integrated TFA (w/cos) outper-

forms the baseline TFA (w/cos) by 5.6%, 2.7% and 7.3% averaged

on three different split sets of the Pascal VOC dataset, respectively.

Thus, the feature-enhanced mechanism of our WENmodel not only

outperforms other FSOD methods in weak-feature scenario, but

also the WEN-integrated model plays an auxiliary role in strong-

feature scenario, achieving impressive performance improvement

in both industrial and common scenarios.

5.4 Ablation Studies

In this section, we conduct several ablation studies to further in-

vestigate our method on the X-ray FSOD dataset, to verify the

effectiveness of each module and analysis more details.

Firstly, to evaluate the effectiveness of PR module, we separate

the prototype mechanism and the L𝑝 of Formula 4 (guide each

category prototype tend to be orthogonal to each other). Secondly,

to evaluate the effectiveness of FR module, we try two different

fusion methods, linear and non-linear type (described in section

4.2.2). All combinations and results are shown in Table 6.

From Table 6, we can observe that the the prototype mechanism

helps improve the performance by “10.3%” on average and the

L𝑝 promotes the detection precision by 7.4% on average in three

different settings of shots. Moreover, after adopting the L𝑝 to the

whole Network (including FW), there has another 0.7% increase.

Additionally, the non-linear fusion method we adopt in FW module

further enhances the performance by 1.3% on average, compared

to the linear fusion method, and achieves a remarkable increase of

12.3% comparing with the pure base model.

Due to length limitation, the ablation studies of the super param-

eters mentioned above are illustrated in supplemental materials.

PR module FR module Novel Set 1

Prototypes L𝑝 Linear Nonlinear 1 3 10

18.4 22 34.4

� � 27.9 36.9 40.9

� � 23.3 35.6 38

� � � 28.4 37.5 41.8

� � � 30.5 38.9 42.2

Table 6: The results of several groups of ablation studies.

6 CONCLUSION

In this paper, we first point out the significant X-ray security in-

spection is a typical FSOD task, which usually faces the dilemma

with only weak features due to heavy occlusion, color fading, etc.,

which causes a severe performance drop for traditional FSOD meth-

ods. To support this vital study, we contribute the first X-ray FSOD

dataset by gathering and annotating the images generated by X-

ray inspection machines. Further, we propose the WEN model,

aggregating and extracting the basis features from critical regions

around instances and precisely enhancing the weak features of

specific objects by fusing the basis features extracted. We evaluate

our method comprehensively on both the X-ray FSOD dataset and

Pascal VOC dataset, and the extensive results demonstrate that

the WEN model outperforms SOTA methods on both X-ray and

common scenarios. We hope our work could provide a new view

to the FSOD community.
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