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Abstract

Existing cross-domain detection methods mostly study
the domain shifts where differences between domains are
often caused by external environment and perceivable for
humans. However, in real-world scenarios (e.g., MRI med-
ical diagnosis, X-ray security inspection), there still exists
another type of shift, named endogenous shift, where the
differences between domains are mainly caused by the in-
trinsic factors (e.g., imaging mechanisms, hardware compo-
nents, etc.), and usually inconspicuous. This shift can also
severely harm the cross-domain detection performance but
has been rarely studied. To support this study, we contribute
the first Endogenous Domain Shift (EDS) benchmark, X-
ray security inspection, where the endogenous shifts among
the domains are mainly caused by different X-ray machine
types with different hardware parameters, wear degrees,
etc. EDS consists of 14,219 images including 31,654 com-
mon instances from three domains (X-ray machines), with
bounding-box annotations from 10 categories. To handle
the endogenous shift, we further introduce the Perturba-
tion Suppression Network (PSN), motivated by the fact that
this shift is mainly caused by two types of perturbations:
category-dependent and category-independent ones. PSN
respectively exploits local prototype alignment and global
adversarial learning mechanism to suppress these two types
of perturbations. The comprehensive evaluation results
show that PSN outperforms SOTA methods, serving a new
perspective to the cross-domain research community.

1. Introduction

Traditional CNN-based detection methods [28,
] suffer a sharp performance drop when they
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Figure 1. Scenarios of apparent and endogenous shift. The appar-
ent shift is obvious while the endogenous shift is inconspicuous.
As illustrated, images from different types of X-ray machines are
very similar in colors and subtly different of lightness, texture, efc.

are applied to a novel scenario. To overcome the quandary
of cross-domain detection, one potential approach is to ex-
ploit Unsupervised Domain Adaptation (UDA) [14,

] to transfer essential knowledge from the labeled source
domain to the unlabeled target domain. Existing methods
primarily study obvious domain shifts, where differences
between domains are often caused by external environment
and perceivable for human. Relying on the powerful ca-
pabilities of CNN, these methods have achieved promising
performance.
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However, in industrial scenarios (e.g., MRI medical di-
agnosis [1, 16, ], X-ray security inspection [
, 52]), there often exists another type of domain shift,
named endogenous domain shift, where differences be-
tween domains are mainly caused by the intrinsic factors
like imaging mechanisms, hardware components, efc., and
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usually inconspicuous. As illustrated in Figure. 1, the shifts
between images from different domains (generated by three
types of X-ray machines) are barely perceivable to naked
eyes. The endogenous shift has been rarely studied in the
literature, but severely harm the cross-domain detection per-
formance. Till now, there is no specific datasest and promis-
ing models to support this meaningful research.

To support the study of this important issue, in this paper,
we contribute the first endogenous domain shift benchmark
named Endogenous Domain Shift dataset (EDS) by select-
ing a typical scenario, X-ray security inspection. Due to
the differences in intrinsic mechanisms or hardware com-
ponents of the imaging systems of different types of X-
ray machines, there are subtle perturbations in X-ray im-
ages generated by different X-ray machines, which cause
the endogenous shift. EDS consists of 14,219 images, in-
cluding 31,654 instances with bounding-box annotations of
10 common categories, generated by three different types
of X-ray security inspection machines. According to our
observations, there exist two types of perturbations in these
domains. The first type of perturbation is highly sensitive
and correlated to the category, and we name it category-
dependent perturbation. The second type of perturbation
mainly refers to the overall imaging qualities, caused by dif-
ferent systems with hardware components containing differ-
ent parameters, named category-independent perturbation.

Due to the fact that traditional CNN-based cross-domain
detection methods do not pay attention to the essential cause
(e.g., two types of perturbations) of this tiny shift, the per-
formance is not satisfied while applying them directly to
handle the endogenous shift. To well deal with endoge-
nous domain shifts, in this work, we further propose the
Perturbation Suppression Network (PSN), consisting of two
core modules, local prototype alignment (LPA) and global
adversarial assimilation (GAA). These two modules sup-
press category-dependent and category-independent pertur-
bations, receptively. Specifically, in LPA, we aggregate
each category of objects into a category prototype through
graph-based method for both source and target data. In
GAA, we exploit the adversarial learning strategy that the
backbone network generates features to confuse the domain
classifier, adaptively suppressing perturbation and retaining
the salient characteristics of the two domains. We summa-
rize the main contributions as follows and hope our study
could serve a new perspective to the cross-domain research.

* We first put forward a novel and important type of do-
main shift in cross-domain detection, the endogenous
shift, which may cause severe performance drop but
has been rarely studied. We proved the existence and
harm of the endogenous shift through experiments.

* To support study of this issue, we contribute a large-
scale benchmark, named EDS dataset, by selecting the

typical scenario, X-ray security inspection. The shift
between domains are mainly caused by two types of
perturbations generated by three types of machines.

* To deal with the endogenous shift, we further propose
the PSN model, exploiting local prototype alignment
and global adversarial learning mechanism to suppress
the two types of perturbations in the endogenous shift.

* We comprehensively evaluate PSN in EDS dataset and
the simulated dataset. All of the results demonstrate
that the proposed method can well deal with the en-
dogenous shift and outperform SOTA methods.

2. Related Work
2.1. Cross-domain Detection Datasets

In cross-domain detection task, previous works [3, 12,
] are usually four types of scenarios, “dif-
ferent climates”, “real vs. composite images”, “different
camera angles” and “cartoon vs. real images”. The com-
mon datasets are Cityscapes [5], Foggy Cityscapes [42],
KITTI [9], SIM10K [!7], Pascal VOC [&] and Clipart [15].
The first scenario usually adopts Cityscapes and Foggy
Cityscapes datasets to simulate the weather across sunny to
foggy. The second scenario usually adopts Cityscapes and
SIM10K to evaluate the adaptation effectiveness from real
and simulated. The third scenario usually adopts Cityscapes
and KITTI to mimic the object photoed by different camera
angles. In the fourth scenario, Pascal VOC and Clipart usu-
ally adopted to portray the domain shift between real and
cartoon images.

> > >

2.2. Cross-domain Detection Methods

Cross-domain detection [2, |1, 18, 36, 55] is more com-
plicated compared to common cross-domain classification
because it is necessary to locate and classify all instances
of various objects inside images [7, 19, 21,22, 37]. Re-
cently, several works have been proposed to address the do-
main shift problem in cross-domain object detection task
by various technologies. [4] has made progress in the chal-
lenging unsupervised domain adaptative object detection
task, which aligns both the image and instance levels in
a domain adversarial manner. After that, the following
works Strong-Weak Domain Adaptive Faster R-CNN [41],
Collaborative Training between Region Proposal Localiza-
tion and Classification [60], Coarse-to-Fine Feature Adap-
tation [61], Graph-induced Prototype Alignment [54] are
proposed one after another to push the direction forward.
However, previous works paid less attention to the essen-
tial cause (e.g., perturbations) of this endogenous shift, the
performance is not satisfied while applying them directly to
handle it.
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3. Endogenous Domain Shift Dataset

A dataset is significant to boost a research. As Table |
illustrates, the existing datasets for cross-domain detection
task mainly focus on the obvious domain shift, which can-
not meet the demands where differences between domains
are inconspicuous and mainly caused by intrinsic mecha-
nism or hardware. The differences of the two types of shifts
are shown in Figure 1. However, till now, there is no spe-
cific dataset to support this meaningful research.

Thus, we contribute the first endogenous domain shift
benchmark named Endogenous Domain Shift (EDS) dataset
by selecting a typical scenario, X-ray security inspection.
Although the imaging mechanisms of the three machines
are roughly the same (illustrated in Table 2), there exist
large endogenous shifts, such as differences of color depth,
texture, which mainly caused by hardware parameters, wear
degrees, etc., of different X-ray machines.

Scenarios Datasets Ny Ne
Different Climates Cityscapes vs Foggy 2 2
Real vs composite SIM 10k vs Cityscapes 2 2

Different angles Cityscapes vs KITTI 2 2
Cartoon vs real Pascal VOC vs Clipart 2 2
Different machines Our EDS Dataset 3 6

Table 1. Comparisons between Existing cross-domain detection
datasets and EDS dataset. N4 refers to the number of domains and
N, refers to the number of cross-domain experiments supported.

3.1. Construction Details

Data Collection. We exploit three X-ray security in-
spection machines from different manufactures and with
different serving time, which guaranties to generate three
domains of images. We randomly put the objects in pre-
prepared package to generate images. After sending the
package to the security inspection machine, the machine
will completely cut out the package by detecting the blank.

Category Selection. As Figure 2 illustrates, EDS dataset
contains the 10 categories of common objects, e.g., “Plastic
Bottle”, “Pressure”, “Lighter, “Knife”, “Device”, “Power
Bank”, “Umbrella”, “Glass Bottle”, “Scissor” and “Lap-
top”. All of these objects are frequently seen in daily life.
Extensive diverse categories and sufficient numbers of in-
stances can provide a more credible evaluation for various
cross-domain detection models.

Quality Control. We followed the similar quality con-
trol procedure of annotation as the famous Pascal VOC [8].
All annotators followed the same annotation guidelines in-
cluding what to annotate, how to annotate bounding, how to
treat occlusion, efc. Besides, to ensure the accuracy of an-
notation, we divide the annotators into 3 groups and all of
the images are randomly designated to 2/3 specific groups
to be annotated. Then, the last group is specially organized
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Figure 3. The distributions of the data. (a) illustrates the distri-

bution of numbers of instances per category and (b) illustrates the
distribution of numbers of instances per image.

to confirm the annotation results.

3.2. Data Properties

Instances per category. EDS contains 14,219 X-ray im-
ages, 10 categories of 31,655 instances with bounding-box
anotations of common objects. Note that we guarantee that
the instances in each category is no less than 1000, which is
sufficient for the evaluation. The distribution of numbers of
instances per category is illustrated in Figure 3 (a).

Instances per image. Each image contains at least one
instance and on average there are 2.22 instances per image.
The distribution of numbers of images containing different
numbers of instances is illustrated in Figure 3 (b).

Color Information. The colors of objects under X-ray
are determined by their chemical composition, mainly re-
flected in the material, which is introduced in Table 2. The
imaging mechanisms of the three machines are roughly the
same, subtly different of color depth and texture.
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Figure 4. The structure of the Perturbation Suppression Network

Domain Classifier 1 Domain Classifier 2
Global Adversarial Assimilation

(PSN). The network consists of three core modules, detection network,

local prototype alignment (LPA) and global adversarial assimilation (GAA). GRL refers to the gradient reverse layer.

Colors Materials Typical examples
Orange Organic Substances Plastics, Clothes
Blue Inorganic Substances Irons, Coppers
Green Mixtures Edge of phones

Table 2. The relationship between object material and color in X-
ray imaging. Different types of X-ray machines are very similar in
imaging colors and subtly different of lightness, texture, efc.

4. Perturbation Suppression Network

To deal with the endogenous shift, in this section, we
introduce the Perturbation Suppression Network (PSN).

4.1. Motivation

Figure 5 illustrates two typical types of endogenous
shifts. First, objects from the same category are primar-
ily composed of similar materials (e.g., metal for knives),
which reflect the intrinsic properties of the category. Ob-
jects from different categories are often shown to have dif-
ferent imaging qualities (e.g., perturbations with different
granularities on knives and plastic bottles). This type of
perturbation is highly sensitive and correlated to the cate-
gory, and we hereby refer to it as the category-dependent
perturbation. Second, different systems consist of hardware
components with different parameters, which will directly
influence the overall imaging qualities (e.g., different satu-
ration and hues of the X-ray image, such as background).
These perturbations are introduced directly on the global
image background while are irrelevant to object categories,
which is called the category-independent perturbation.

Based on the above observation, we propose the Pertur-
bation Suppression Network (PSN), which exploits a in-
tegrated mechanism to suppress the two different types of
perturbations mentioned above. Regarding the category-
dependent perturbation, inspired by the fact that the pro-
totype of each category is the strongest embodiment of the
common characteristics of this category prototype, we align

the corresponding categorical prototypes for the source
and target domains (X-ray machines) to generate domain-
invariant features. Considering the category-independent
perturbation, due to the fact that the perturbation is globally
distributed over the entire image, we adopt global adversar-
ial learning to suppress them. In particular, we guide the
backbone network to learn features that could confuse the
domain classifier to make predictions.

Knife Plastic bottle e.g., Background
- o C=
R ]
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Figure 5. The illustration of the typical endogenous domain shifts.
(a) refers to the category-dependent perturbation and (b) refers to
the category-independent perturbation.

4.2. Network Architecture

In Figure 4, the framework includes three core modules,
the detection network, local prototype alignment module
(LPA) and global adversarial assimilation module (GAA).
We select the reputed base model, Faster R-CNN, as the
detection network. LPA suppress the category-dependent
perturbation through aligning the corresponding categorical
prototypes. GAA suppress the category-independent per-
turbation through adopting global adversarial mechanism.

4.2.1 Local Prototype Alignment (LPA)

To deal with the category-dependent perturbation, in
this part, we construct a relation graph set G

{G) G=2) G} for each instance 7, through struc-
turing the proposals surrounding ¢ generated by the RPN
network. Each graph G = {V(®) E®} where V() =

21192



{i(m) (=) i(™)} is the proposal set of the instance i
and E® is the edge set of each two proposals in V(*). Tn
the first step, we aggregate all proposals of the same object
to generate the most accurate feature map, i.e., the instance
prototype (¥, that we consider to represent the instance i.
This process is formulated as:

N(ﬂ.) N(.,. —1

00 — Z Z ToU(i(7m) ()Y . j(7a) /N¢ry (1)

n=1 m=1

where (") refers to the proposals around of the instance i
except i(7), N, (+) refers to the number of proposals around
the instance i and Q¥ refers to the prototype of instance
i. Inspired by [54], we choose IoU of two proposals as the
metric. Similarly, we exploit the same operation to get cat-
egory probability prototype P(*) for each instance i.

In the second step, similarly, we construct a relation
graph set for each class k in the input image. This step
generates the category prototype by the same operation as
the first step. This process can be formulated as:

Ny Ny
Q) — E:GMM¢WU /S PR @
=1 =1

where P(“*) refers to the probability of 2(*) belonging to
the category k, IN(;) refers to the number of instances of
category k and Q%) refers to the prototype of category k.

After the two steps operation, the graph generates a pro-
totype set QF) = Q) Q) Ok Each ele-
ments in 22(F) represents the prototype of one category. In
the third step, we construct two prototype libraries, L(*)
and L®), for both source data and target data. In each
epoch of training, the prototype set 2 generated from the
input image updates the prototype library. Thus, at the end
of each round of training, the LPA module generates two
prototype libraries, Ly = {LE’;) ), LEI;)Z) L(k )} and
Ly = {Lgf)l), L(k)’) ,L(t)" }. The process of updatmg
can be formulated as follows:

(k)
Liy = { ) Yoo = 3)
a-Qu)+(1—a)- Ly, 1>1

where o refers to the cosine distance of two variables, e.g.,
a = cos(QEf)),LEf) 1)) ng)) refers to the category proto-

type of k in the /-th training and LE;CZ 1 refers to the category

prototype k in the library after (I — 1)-th training.

Finally, we try to minimize the distance between the pair
of prototypes with the same category and maximize the dis-
tance between different categories of the two domains. The

process of alignment can be formulated as follow:

(k)
Lm _ " v 4
Nm g:Hu> L )

where L, refers to the loss of the LPA module and W refers
to the measure of distances for different categories in both
domains, which is illustrated in Supplementary Materials.

4.2.2 Global Adversarial Assimilation (GAA)

To deal with the category-independent perturbation, in this
part, we integrate multiple domain classifiers C into sev-
eral convolutional blocks in the backbone network G. Thus,
the feature map set ® = {®1) &) .. &1} is trans-
ported to the domain classifiers C as “raw material” to gen-
erate the adversarial loss.Therefore, the backbone network
G tries to generate collective features of the two domains to
confuse the classifier while the classifier tries to distinguish
that which domain the input image comes from. In the two-
player minimax game, the perturbation information is se-
lectively filtered out while generating the robust collective
features. The process of inputting the features outputted by
the backbone network into the classifier can be formulated:

Ly, = 1101111 max Ey.oDs .2y {108C (G (x5))
g fe

Q)
+log (1 - C(G ()}

where x5 and x; refers to the input from both domains.

In addition, in order to give full play to the ability of
GAA for suppressing the global perturbation, we add the
prototype set Q) = {QF1) Ok2)  kn)} generated
in each round of training by LPA into the “raw materials”
like the feature map set ® above to generate a sufficient
number of gradients to adjust the parameters in backbone
network G. This process can be formulated as follows:

(k)
Ly, = H;;nrl},?‘XEsz<k> ~Q.), szgi‘)kn(,){bgc(g( )

(6)
+log(1 - C(2)}

where QEIZ)) and sz)) refer to the category prototype of k
generated by Equation 2 in both domains. Note that the

generation of Q(]:) and Q(f) relies on the backbone network
G, we omit the backbone network G for simplicity.

4.2.3 Network Training

The total loss of the perturbation suppression network £
can be calculated as the sum of the loss values of the three
core modules, the detection network, LPA and GAA. The
calculation of the total loss can be formulated as follows:

L=Lg+MLp+ g Lyg, +Ag, Ly, @)
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where L, refers to the detection loss of the faster R-CNN
and Ay, Ag,, Mg, refer to the super parameters, which are
discussed in the Supplementary Materials.

In the base training stage, the network are trained with
abundant data of source domain, which can easily local-
ize the appropriate proposals and determine their categories.
After the base training, a pair of images from two domains
are imputed to PSN to calculate the loss values of different
modules, respectively. Specifically, the entire training pro-
cedure of the whole Perturbation Suppression Network can
be viewed as Algorithm 1.

Algorithm 1 Training of Perturbation Suppression Network

Input: A pair of images, the number of categories k.
Output: The loss value L.
Generate the feature map set .
Generate the proposal set V(?) with m, proposals.
Calculate the loss value L.
foralla=1,2,...,7, do
Calculate each instance prototype Q(%).
Calculate each probability prototype P(®).
end for
forallb=1,2,...,k, do
Calculate each category prototype Q(®).
Update the prototype library L.
end for
Calculate the loss value £,,.
Calculate the loss value £, through ®.
Calculate the loss value £, through the set of 2(*).
Calculate the total loss value L.

S. Experiments

In this section, we introduce the comprehensive experi-
ments to evaluate the effectiveness of the proposed method.

5.1. Experimental Settings

5.1.1 Datasets and Baselines

First, we conduct experiments on the proposed EDS dataset.
Second, we simulate the endogenous shift in natural images
dataset CityScapes [5] by adding adversarial noises, gen-
erating two simulated datasets. Third, to evaluate the gen-
eralization to common scenario, we conduct experiments
on the adaptation from Cityscapes [0] to Foggy-Cityscapes
[42]. In both EDS and the simulated dataset, we conduct
six groups of experiments, totally in Table 3. Regarding
the models for comparison, we select the SOTA models
with different mechanisms, SO [40] (“Source Only”, i.e.,
Faster R-CNN model trained on the source domain only,
the most commonly used baseline), DA [4] (instance-level
and image-level alignment), SWDA [41] (attention mech-
anism), CST [60] (collaborative learning), CFA [61] (pro-
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totype alignment). For fair comparison, we select VGG-
16 [43] as the backbone network for all models.

5.1.2 Maetrics and parameters

We choose the widely used metric, mean average precision
(mAP) for overall performance and average precision (AP)
for each category. The parameters of the two domain clas-
sifiers are optimized by Adam and other parameters are op-
timized by the SGD. The initial learning rate is set to 0.001
and becomes 0.0001 after 50000 steps. The momentum of
SGD and weight decay are set to 0.9 and 0.0005 respec-
tively. The batch size is set to two (one of the source domain
and one of the target) with shuffle strategy while training.
Besides, the IoU threshold measuring the accuracy of the
predicted bounding box against ground-truth is set to 0.5.

5.2. Comparing with SOTA models

In this section, we illustrate the mAP results and the av-
erage result of different categories on the EDS dataset (Sec-
tion 5.2.1), the simulated dataset (Section 5.2.2), the com-
mon natural dataset CityScapes [5] (Section 5.2.3). Note
that due to the length limitation of the paper, in Section
5.2.1, we only show the mAP results of six groups of set-
tings on EDS dataset in Table 3 and the average result for
different categories in six groups of settings in EDS dataset
in Table 4. The entire and specific experimental results of
all categories under all groups of settings in Section 5.2.1
are illustrated in the supplementary materials.

5.2.1 Results on the EDS dataset

For the mAP results on the EDS dataset, Table 3 illustrates
two advantages of our method, stability and effectiveness.
Regarding the stability, our method outperforms the most
commonly used baseline “SO” [40] by a large margin in all
six groups settings. Specifically, our method outperforms
“Source Only” by 6.0%, 4.0%, 9.6%, 2.4%, 5.9% and 1.3%
in the setting of D1_>2, D1_>3, DQ_)l, D2_>3, D3_>1 and
Ds_,9, respectively. In some settings, other methods do not
perform better than the baseline “SO”. The results demon-
strates that our method can achieve a stable performance
improvement in handling the endogenous shift in various

Methods D12 Diss D21 D23 Dzsi1 Dioo
SO [40] 423 53.6 41.8 55.4 52.7 53.6
DA [4] 46.3 55.6 45.0 57.5 56.1 54.6
SWDA [41] 469 56.5 49.7 56.7 56.6 54.8
CST [60] 46.9 54.3 49.2 55.5 56.5 52.8
CFA [01] 44.3 53.7 51.3 53.6 554 51.3
PSN (ours) 48.3 57.6 514 57.8 58.6 54.9

Table 3. The mAP results (%) of various methods on each group
of adaptation of EDS dataset. D, _,, refers to the adaptation from
domain m to domain n. “SO” refers to “Source only”, the Faster
R-CNN model trained on the source domain only.



Methods DB PR LI KN SE PB UM GB SC LA

SO [40] 55.3 44.8 34.1 16.5 43.2 65.8 85.2 37.6 26.5 87.4
DA [4] 54.7 52.7 38.6 15.4 47.7 68.3 86.7 40.2 30.2 90.1
SWDA [41] 55.6 52.6 40.9 17.3 49.5 69.8 86.7 41.1 30.0 90.3
CST [60] 55.1 51.2 39.0 16.0 49.6 69.5 86.5 40.7 25.0 92.2
CFA [61] 51.9 52.0 33.7 14.8 49.6 68.9 85.4 41.8 26.8 90.5
PSN (ours) 56.2 54.0 41.3 18.2 52.4 72.1 86.8 44.4 31.4 91.4

Table 4. The AP results (%) of different categories on on the adap-
tation of EDS dataset. “D,,_,,,” refers to the model trained on the
source domain m and tested on the target domain n. “DB”, ...,
“LA” refer to “Plastic Bottle”, ... “Laptop” in 3.1, respectively.

settings. As for the effectiveness, our method outperforms
the SOTA methods in different settings, especially by 1.4%,
1.1% and 2.0% in D, _,5, D1 _,3 and D3_,. Note that in the
sixth group, i.e., D3_,o, our method has a slight improve-
ment to the baseline by 1.3%, mainly because the endoge-
nous shift between D3 and D5 is more smaller than other
pairs of domains. As for Ds_,5 with a higher improvement
by 2.4%, it mainly because the baseline achieves a higher
performance due to that the backbone network can extract
better features, which limits the effectiveness for extracting
common features of all cross-domain detection methods.

For the average results of each category, Table 4 illus-
trates that our method outperforms the baseline by a large
margin in all categories, especially for SE, PB and GB by
9.2%, 6.3% and 6.8%. Besides, in UM and LA, our method
outperforms the baseline by 1.6% and 4.0%, while a slighter
improvement to other methods. We perform a visual anal-
ysis of this difference in results in Figure 6. As Figure 6
illustrates that compared to UM and LA, the endogenous
shift, i.e., perturbation difference of SE, PB and GB are ob-
viously heavier, which also proves that the effectiveness of
the proposed method to suppress perturbations.

% B 78 T4 20
R B € s 1N
(a) (b

)

Figure 6. Perturbations around five categories of objects. (a) refers
to the heavy endogenous domain shift and (b) refers to the slight
endogenous domain shift. Obviously, SE, PB and GB of (a) are
heavier than UM and LA of (b).

5.2.2 Results on the simulated dataset

In fact, the endogenous shift also exists in natural images
[ ]. To more comprehensively evaluate
the effectiveness of our method in eliminating the endoge-
nous shift, we simulate the endogenous shift in natural im-
ages dataset CityScapes [5] by adding adversarial noises.
We conduct two groups of experiments to comprehensively
evaluate our method on this scenario as follows:

) £} ) b}

21195

Simulated Dataset 1 Simulated Dataset 2

Figure 7. Examples of images generated by two types of adversar-

ial attack methods. Small perturbation caused by adversarial noise
makes it difficult to observe the small shift by the naked eyes.

Adaptation from CityScapes to Simulated dataset 1.
We select the most commonly-used adversarial attack PGD
[27] to generate adversarial noises based on an ImageNet
pre-trained ResNet-50 model, so that we could build a new
domain of images (the simulated dataset 1). Then, we eval-
uate the performance of all methods on the adaptation from
the original domain to the simulated one. The results on the
adaptation from the original Cityscapes dataset [0] to the
simulated dataset 1 are shown in Table 5.

Methods mAP person rider car truck bus train mcyc beyc
SO [40] 239 31.0 17.6 464 169 23.8 26.6 144 14.8
DA[4] 36.8 482 26.152.8 31.5 31.6 38.0 35.0 314
SWDA [41] 41.4 54.1 30.0 53.5 36.1 33.0 42.2 444 37.7
CST [60] 41.1 51.8 31.7 53.5 39.2 33.1 42.7 36.8 394
CFA [6]] 42.8 49.8 30.1 53.8 38.7 34.1 46.3 44.1 453
PSN (ours) 44.8 54.2 32.8 53.6 38.8 33.4 46.9 51.2 47.5

Table 5. The mAP results (%) and AP results (%) on different
categories for various methods on the adaptation from the original
Cityscapes dataset [0] to the simulated dataset 1. “SO” refers
to the Faster R-CNN model trained on the source domain only.

First, compared with the “SO” model, the performance
of domain adaptation methods increases by various mar-
gins. Thus, the domain shift, caused by small perturbations
in adversarial examples, exists objectively, which is consis-
tent with our hypothesis. Second, for the adaptation from
the original Cityscapes dataset to the simulated dataset 1,
Table 5 demonstrates that the proposed method PSN is ef-
fective. As Table 5 shows, our method outperforms all the
baselines and especially achieves a remarkable increase of
20.9% over the “SO” model. The graph-based CFA [01]
achieves the second-best performance and our method out-
performs it by 2.0% and 2.7%, respectively.

Adaptation from Simulated dataset 1 to 2. We build
another new domain images (the simulated dataset 2) by
generating adversarial noises based on an ImageNet pre-
trained DenseNet model, so that we could build a new adap-
tation evaluation on the two domains for different adver-
sarial noises. The examples from the two domains (Simu-
lated dataset 1 and 2) are illustrated in Figure 7. Obviously,
it is difficult for humans to detect such domain shift with
the naked eyes. The results on the adaptation between two
simulated datasets are shown in Table 6. For the adapta-
tion between two simulated datasets, Table 6 demonstrates
that our method outperforms “SO” by 14.2% and 15.4% in
two groups of settings, respectively. The attention-based



Methods Simulated Dataset 1 — Simulated ]?ataset 2 Simulated.Dataset 2 — Simulated ]?ataset 1
mAP person rider car truck bus train mcyc bcyc|mAP person rider car truck bus train mcyc beyc
SO [40] 358 325 41.6 529 27.2 399 30.8 329 28.6|35.6 327 422 422 26.6 42.1 25.3 334 299
DA[4] 473 395 504 59.6 462 52.9 46.1 45.8 383|474 384 49.8 49.8 464 53.3 482 44.6 383
SWDA [41] 479 38.0 49.2 579 482 56.7 52.5 444 36.7|48.3 384 49.7 49.7 473 57.0 52.7 473 38.1
CST [60] 45.7 36.8 485 58.2 427 52.1 46.0 45.0 36.2|46.5 37.1 49.3 49.3 46.1 53.7 44.1 458 37.8
CFA [61] 46.7 39.3 48.6 59.8 46.5 52.5 48.3 433 354|463 384 48.8 48.8 47.8 51.6 47.1 43.0 34.1
PSN (ours) 50.0 39.1 51.7 60.0 51.6 57.1 52.7 48.0 38.8|51.0 38.5 50.0 50.1 53.1 60.7 57.8 49.2 38.6

Table 6. The mAP results (%) and AP results (%) on different categories on the adaptation from the simulated dataset 1 to the simulated
dataset 2. Two simulated datasets are based on the Cityscapes dataset [6]. “SO” refers to the “Sourece only” model.

SWDA [41] achieves the second-best performance and our
method outperforms it by 2.1% and 2.7%, respectively.

5.2.3 Results from CityScapes to Foggy-CityScapes

Our model consists of the prototype adaptation and adver-
sarial learning mechanisms, which can be also exploited to
eliminating the apparent shift. In this section, to verify the
generalization of our PSN to the common scenario, we also
evaluate the performance on the traditional setting, the ada-
patation from Cityscapes [6] to Foggy-Cityscapes [42].

Methods mAP person rider car truck bus train mcyc beyc
SO [40] 20.8 24.1 29.4 30.6 10.6 25.0 4.6 155 26.8
DA[4] 27.6 25.0 31.040.5 22.1 35.320.2 20.0 27.1
SWDA [41] 34.3 299 42.3 435 24.5 36.2 32.6 30.0 353
CST[60] 35.9 32.7 44.4 50.1 21.7 45.6 25.4 30.1 36.8
CFA [61] 38.6 340 46.9 52.1 30.8 43.229.9 34.7 37.3

PSN (ours) 40.9 37.4 452 53.0 31.1 48.7 38.8 33.1 39.2

Table 7. The mAP and AP results (%) on different categories on
the adaptation from Cityscapes [6] to Foggy-Cityscapes [42].

The mAP results and AP results on different categories
are shown in Table 7. As shown in Table 7, the pro-
posed achieve an remarkable performance of 40.9% on
the weather transfer task, which is the best result among
all the counterparts. In particular, we achieve a satisfac-
tory increase of 20.1% over the “SO” model. Comparing
with previous SOTA graph-based adaptation method CFA,
our method still improves the mAP by 2.3%. Although
we do not leverage extra attention mechanism, our method
still outperforms previous SOTA attention-based SWDA by
6.6%. As for each category, in the category truck, our
model achieve a surprising increase of 34.2%. Overall, the
proposed model can achieve stable performance increase
on different categories, which verifies the effectiveness of
eliminating the apparent shift on common scenarios.

5.3. Ablation Studies

In this section, we conduct several ablation studies to
deeply investigate our method on the EDS dataset. We first
analysis the effectiveness of GAA module by only integrat-
ing the GAA module into the base detection network (the
“Source only” model, general practice of the abalation stud-

ies for domain adaptation detection methods). Second, we
evaluate the effectiveness of the LPA module by only in-
tegrating the LPA module into the base detection network.
Third, we evaluate the effectiveness of both two modules
(i.e., the whole network). The results are shown in Table 8.

Methods mAP DB PR LI KN SE PB UM GB SC LA

SO [40]
+G
+L

+G+L

423 52.3 30.7 24.8 10.8 30.1 59.3 81.5 29.3 18.7 85.2
447 482 44.8 25.6 9.7 362 55.1 79.9 37.1 224 87.7
47.0 495 47.4 254 10.7 46.2 60.9 83.0 33.7 24.6 88.5
48.3 51.9 47.5 29.9 11.3 43.1 66.7 82.9 36.3 24.5 88.7

Table 8. Average results of ablation studies. “+G” refers to the
base model integrated with the GAA and “+L” refers to integrating
the LPA module. “+G+L” refers to the whole PSN network.

Table 5 shows that the GAA module helps improving
the performance about 2.4% and the LPA module helps to
improve the performance by 4.7%. Moreover, after the two
modules integrated together, the performance of the whole
network achieves a remarkable increase of 6.0%, compared
to the widely adopted base “Source only” in other literature.

6. Conclusion

In this paper, we point out that existing cross-domain de-
tection methods mainly study the domain shifts which are
usually obvious. We first put forward a novel and incon-
spicuous types of domain shift in cross-domain detection,
endogenous shift. To support study of this issue, we con-
tribute a large-scale benchmark, EDS, by selecting the typ-
ical scenario, X-ray security inspection. To deal with the
endogenous shift, we further propose the PSN, exploiting
local prototype alignment and global adversarial learning
mechanism to suppress the two types of perturbations in
the endogenous shift. We evaluate the ability of PSN for
eliminating the endogenous shift by comprehensive exper-
iments. We release the dataset and code, hoping our study
could serve a new perspective to the cross-domain research.
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